Existence of "big" colimits in the category of additive commutative groups #
If F : J ⥤ AddCommGrp.{w}
is a functor, we show that F
admits a colimit if and only
if Colimits.Quot F
(the quotient of the direct sum of the commutative groups F.obj j
by the relations given by the morphisms in the diagram) is w
-small.
theorem
AddCommGrp.isColimit_iff_bijective_desc
{J : Type u}
[CategoryTheory.Category.{v, u} J]
{F : CategoryTheory.Functor J AddCommGrp}
(c : CategoryTheory.Limits.Cocone F)
[DecidableEq J]
:
If c
is a cocone of F
such that Quot.desc F c
is bijective, then c
is a colimit
cocone of F
.
theorem
AddCommGrp.hasColimit_iff_small_quot
{J : Type u}
[CategoryTheory.Category.{v, u} J]
{F : CategoryTheory.Functor J AddCommGrp}
[DecidableEq J]
:
A functor F : J ⥤ AddCommGrp.{w}
has a colimit if and only if Colimits.Quot F
is
w
-small.