Documentation

Mathlib.Algebra.Category.ModuleCat.Monoidal.Basic

The monoidal category structure on R-modules #

Mostly this uses existing machinery in LinearAlgebra.TensorProduct. We just need to provide a few small missing pieces to build the MonoidalCategory instance. The SymmetricCategory instance is in Algebra.Category.ModuleCat.Monoidal.Symmetric to reduce imports.

Note the universe level of the modules must be at least the universe level of the ring, so that we have a monoidal unit. For now, we simplify by insisting both universe levels are the same.

We construct the monoidal closed structure on Module R in Algebra.Category.ModuleCat.Monoidal.Closed.

If you're happy using the bundled Module R, it may be possible to mostly use this as an interface and not need to interact much with the implementation details.

(implementation) tensor product of R-modules

Instances For

    (implementation) tensor product of morphisms R-modules

    Instances For

      (implementation) left whiskering for R-modules

      Instances For

        (implementation) right whiskering for R-modules

        Instances For
          theorem ModuleCat.MonoidalCategory.tensor_comp {R : Type u} [CommRing R] {X₁ : ModuleCat R} {Y₁ : ModuleCat R} {Z₁ : ModuleCat R} {X₂ : ModuleCat R} {Y₂ : ModuleCat R} {Z₂ : ModuleCat R} (f₁ : X₁ Y₁) (f₂ : X₂ Y₂) (g₁ : Y₁ Z₁) (g₂ : Y₂ Z₂) :

          The associator_naturality and pentagon lemmas below are very slow to elaborate.

          We give them some help by expressing the lemmas first non-categorically, then using convert _aux using 1 to have the elaborator work as little as possible.

          (implementation) the left unitor for R-modules

          Instances For

            (implementation) the right unitor for R-modules

            Instances For

              Remind ourselves that the monoidal unit, being just R, is still a commutative ring.

              @[simp]
              theorem ModuleCat.MonoidalCategory.hom_apply {R : Type u} [CommRing R] {K : ModuleCat R} {L : ModuleCat R} {M : ModuleCat R} {N : ModuleCat R} (f : K L) (g : M N) (k : K) (m : M) :
              @[simp]
              theorem ModuleCat.MonoidalCategory.associator_hom_apply {R : Type u} [CommRing R] {M : ModuleCat R} {N : ModuleCat R} {K : ModuleCat R} (m : M) (n : N) (k : K) :
              @[simp]
              theorem ModuleCat.MonoidalCategory.associator_inv_apply {R : Type u} [CommRing R] {M : ModuleCat R} {N : ModuleCat R} {K : ModuleCat R} (m : M) (n : N) (k : K) :