(implementation) the braiding for R-modules
Equations
- Eq (M.braiding N) (TensorProduct.comm R M.carrier N.carrier).toModuleIso
Instances For
theorem
ModuleCat.MonoidalCategory.braiding_naturality
{R : Type u}
[CommRing R]
{X₁ X₂ Y₁ Y₂ : ModuleCat R}
(f : Quiver.Hom X₁ Y₁)
(g : Quiver.Hom X₂ Y₂)
:
theorem
ModuleCat.MonoidalCategory.braiding_naturality_left
{R : Type u}
[CommRing R]
{X Y : ModuleCat R}
(f : Quiver.Hom X Y)
(Z : ModuleCat R)
:
theorem
ModuleCat.MonoidalCategory.braiding_naturality_right
{R : Type u}
[CommRing R]
(X : ModuleCat R)
{Y Z : ModuleCat R}
(f : Quiver.Hom Y Z)
:
theorem
ModuleCat.MonoidalCategory.hexagon_forward
{R : Type u}
[CommRing R]
(X Y Z : ModuleCat R)
:
Eq
(CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator X Y Z).hom
(CategoryTheory.CategoryStruct.comp (X.braiding (CategoryTheory.MonoidalCategoryStruct.tensorObj Y Z)).hom
(CategoryTheory.MonoidalCategoryStruct.associator Y Z X).hom))
(CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight (X.braiding Y).hom Z)
(CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator Y X Z).hom
(CategoryTheory.MonoidalCategoryStruct.whiskerLeft Y (X.braiding Z).hom)))
theorem
ModuleCat.MonoidalCategory.hexagon_reverse
{R : Type u}
[CommRing R]
(X Y Z : ModuleCat R)
:
Eq
(CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator X Y Z).inv
(CategoryTheory.CategoryStruct.comp ((CategoryTheory.MonoidalCategoryStruct.tensorObj X Y).braiding Z).hom
(CategoryTheory.MonoidalCategoryStruct.associator Z X Y).inv))
(CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft X (Y.braiding Z).hom)
(CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator X Z Y).inv
(CategoryTheory.MonoidalCategoryStruct.whiskerRight (X.braiding Z).hom Y)))
The symmetric monoidal structure on Module R
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
ModuleCat.MonoidalCategory.braiding_hom_apply
{R : Type u}
[CommRing R]
{M N : ModuleCat R}
(m : M.carrier)
(n : N.carrier)
:
Eq
(DFunLike.coe (CategoryTheory.ConcreteCategory.hom (CategoryTheory.BraidedCategory.braiding M N).hom)
(TensorProduct.tmul R m n))
(TensorProduct.tmul R n m)
theorem
ModuleCat.MonoidalCategory.braiding_inv_apply
{R : Type u}
[CommRing R]
{M N : ModuleCat R}
(m : M.carrier)
(n : N.carrier)
:
Eq
(DFunLike.coe (CategoryTheory.ConcreteCategory.hom (CategoryTheory.BraidedCategory.braiding M N).inv)
(TensorProduct.tmul R n m))
(TensorProduct.tmul R m n)
theorem
ModuleCat.MonoidalCategory.tensorμ_eq_tensorTensorTensorComm
{R : Type u}
[CommRing R]
{A B C D : ModuleCat R}
:
Eq (CategoryTheory.MonoidalCategory.tensorμ A B C D)
(ofHom (TensorProduct.tensorTensorTensorComm R A.carrier B.carrier C.carrier D.carrier).toLinearMap)
theorem
ModuleCat.MonoidalCategory.tensorμ_apply
{R : Type u}
[CommRing R]
{A B C D : ModuleCat R}
(x : A.carrier)
(y : B.carrier)
(z : C.carrier)
(w : D.carrier)
:
Eq
(DFunLike.coe (CategoryTheory.ConcreteCategory.hom (CategoryTheory.MonoidalCategory.tensorμ A B C D))
(TensorProduct.tmul R (TensorProduct.tmul R x y) (TensorProduct.tmul R z w)))
(TensorProduct.tmul R (TensorProduct.tmul R x z) (TensorProduct.tmul R y w))