Documentation

Mathlib.Algebra.Category.ModuleCat.Presheaf.Monoidal

The monoidal category structure on presheaves of modules #

Given a presheaf of commutative rings R : Cᵒᵖ ⥤ CommRingCat, we construct the monoidal category structure on the category of presheaves of modules PresheafOfModules (R ⋙ forget₂ _ _). The tensor product M₁ ⊗ M₂ is defined as the presheaf of modules which sends X : Cᵒᵖ to M₁.obj X ⊗ M₂.obj X.

Notes #

This contribution was created as part of the AIM workshop "Formalizing algebraic geometry" in June 2024.

Auxiliary definition for tensorObj.

Equations
Instances For

    The tensor product of two presheaves of modules.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem PresheafOfModules.Monoidal.tensorObj_map_tmul {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {R : CategoryTheory.Functor Cᵒᵖ CommRingCat} {M₁ M₂ : PresheafOfModules (R.comp (CategoryTheory.forget₂ CommRingCat RingCat))} {X Y : Cᵒᵖ} (f : X Y) (m₁ : (M₁.obj X)) (m₂ : (M₂.obj X)) :
      ((tensorObj M₁ M₂).map f).hom (m₁ ⊗ₜ[(R.obj X)] m₂) = (M₁.map f).hom m₁ ⊗ₜ[(R.obj Y)] (M₂.map f).hom m₂
      noncomputable def PresheafOfModules.Monoidal.tensorHom {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {R : CategoryTheory.Functor Cᵒᵖ CommRingCat} {M₁ M₂ M₃ M₄ : PresheafOfModules (R.comp (CategoryTheory.forget₂ CommRingCat RingCat))} (f : M₁ M₂) (g : M₃ M₄) :
      tensorObj M₁ M₃ tensorObj M₂ M₄

      The tensor product of two morphisms of presheaves of modules.

      Equations
      Instances For