Documentation

Mathlib.Algebra.Category.ModuleCat.Stalk

Module structure on stalks #

Let M be a presheaf of R-modules on a topological space. We endow M.presheaf.stalk x with an R.stalk x-module structure.

The key characterizing lemma is PresheafOfModules.germ_smul, which describes the compatibility of the scalar action and TopCat.Presheaf.germ.

noncomputable def CategoryTheory.Limits.colimit.smul {C : Type u_1} [SmallCategory C] [IsFiltered C] (R : Functor C RingCat) (M : Functor C Ab) [(i : C) → Module (R.obj i) (M.obj i)] (H : ∀ {i j : C} (f : i j) (r : (R.obj i)) (m : (M.obj i)), (ConcreteCategory.hom (M.map f)) (r m) = (ConcreteCategory.hom (R.map f)) r (ConcreteCategory.hom (M.map f)) m) (r : (R.comp (forget RingCat)).ColimitType) (m : (M.comp (forget Ab)).ColimitType) :

(Implementation). The scalar multiplication function on ColimitType.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[reducible, inline]
    noncomputable abbrev CategoryTheory.Limits.filteredColimitsModule {C : Type u_1} [SmallCategory C] [IsFiltered C] (R : Functor C RingCat) (M : Functor C Ab) [(i : C) → Module (R.obj i) (M.obj i)] (H : ∀ {i j : C} (f : i j) (r : (R.obj i)) (m : (M.obj i)), (ConcreteCategory.hom (M.map f)) (r m) = (ConcreteCategory.hom (R.map f)) r (ConcreteCategory.hom (M.map f)) m) :

    (Implementation). The module structure on AddCommGrpCat.FilteredColimits.colimit.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[reducible, inline]
      noncomputable abbrev CategoryTheory.Limits.IsColimit.module {C : Type u_1} [SmallCategory C] [IsFiltered C] (R : Functor C RingCat) (M : Functor C Ab) [(i : C) → Module (R.obj i) (M.obj i)] (H : ∀ {i j : C} (f : i j) (r : (R.obj i)) (m : (M.obj i)), (ConcreteCategory.hom (M.map f)) (r m) = (ConcreteCategory.hom (R.map f)) r (ConcreteCategory.hom (M.map f)) m) {cR : Cocone R} (hcR : IsColimit cR) {cM : Cocone M} (hcM : IsColimit cM) :
      Module cR.pt cM.pt

      Given a cofiltered diagram of rings R, and a module M over R, this is the colim R-module structure of colim M.

      Equations
      Instances For
        theorem CategoryTheory.Limits.IsColimit.ι_smul {C : Type u_1} [SmallCategory C] [IsFiltered C] (R : Functor C RingCat) (M : Functor C Ab) [(i : C) → Module (R.obj i) (M.obj i)] (H : ∀ {i j : C} (f : i j) (r : (R.obj i)) (m : (M.obj i)), (ConcreteCategory.hom (M.map f)) (r m) = (ConcreteCategory.hom (R.map f)) r (ConcreteCategory.hom (M.map f)) m) {cR : Cocone R} (hcR : IsColimit cR) {cM : Cocone M} (hcM : IsColimit cM) (i : C) (r : (R.obj i)) (m : (M.obj i)) :
        Equations
        • One or more equations did not get rendered due to their size.