TopModuleCat
is a CategoryWithHomology
#
TopModuleCat R
, the category of topological R
-modules, is not an abelian category.
But since the topology on subquotients are well-defined, we can still talk about homology in this
category. See the CategoryWithHomology (TopModuleCat R)
instance in this file.
@[reducible, inline]
abbrev
TopModuleCat.ker
{R : Type u}
[Ring R]
[TopologicalSpace R]
{M N : TopModuleCat R}
(φ : M ⟶ N)
:
Kernel in TopModuleCat R
is the kernel of the linear map with the subspace topology.
Equations
Instances For
def
TopModuleCat.kerι
{R : Type u}
[Ring R]
[TopologicalSpace R]
{M N : TopModuleCat R}
(φ : M ⟶ N)
:
The inclusion map from the kernel in TopModuleCat R
.
Equations
- TopModuleCat.kerι φ = TopModuleCat.ofHom { toLinearMap := (LinearMap.ker (TopModuleCat.Hom.hom φ)).subtype, cont := ⋯ }
Instances For
instance
TopModuleCat.instMonoKerι
{R : Type u}
[Ring R]
[TopologicalSpace R]
{M N : TopModuleCat R}
(φ : M ⟶ N)
:
@[simp]
theorem
TopModuleCat.kerι_comp
{R : Type u}
[Ring R]
[TopologicalSpace R]
{M N : TopModuleCat R}
(φ : M ⟶ N)
:
@[simp]
theorem
TopModuleCat.kerι_apply
{R : Type u}
[Ring R]
[TopologicalSpace R]
{M N : TopModuleCat R}
(φ : M ⟶ N)
(x : (fun (X : TopModuleCat R) => ↑X.toModuleCat) (ker φ))
:
def
TopModuleCat.isLimitKer
{R : Type u}
[Ring R]
[TopologicalSpace R]
{M N : TopModuleCat R}
(φ : M ⟶ N)
:
TopModuleCat.ker
is indeed the kernel in TopModuleCat R
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[reducible, inline]
abbrev
TopModuleCat.coker
{R : Type u}
[Ring R]
[TopologicalSpace R]
{M N : TopModuleCat R}
(φ : M ⟶ N)
:
Cokernel in TopModuleCat R
is the cokernel of the linear map with the quotient topology.
Equations
Instances For
def
TopModuleCat.cokerπ
{R : Type u}
[Ring R]
[TopologicalSpace R]
{M N : TopModuleCat R}
(φ : M ⟶ N)
:
The projection map to the cokernel in TopModuleCat R
.
Equations
- TopModuleCat.cokerπ φ = TopModuleCat.ofHom { toLinearMap := (LinearMap.range (TopModuleCat.Hom.hom φ)).mkQ, cont := ⋯ }
Instances For
@[simp]
theorem
TopModuleCat.hom_cokerπ
{R : Type u}
[Ring R]
[TopologicalSpace R]
{M N : TopModuleCat R}
(φ : M ⟶ N)
(x : ↑N.toModuleCat)
:
theorem
TopModuleCat.cokerπ_surjective
{R : Type u}
[Ring R]
[TopologicalSpace R]
{M N : TopModuleCat R}
(φ : M ⟶ N)
:
Function.Surjective ⇑(Hom.hom (cokerπ φ))
instance
TopModuleCat.instEpiCokerπ
{R : Type u}
[Ring R]
[TopologicalSpace R]
{M N : TopModuleCat R}
(φ : M ⟶ N)
:
@[simp]
theorem
TopModuleCat.comp_cokerπ
{R : Type u}
[Ring R]
[TopologicalSpace R]
{M N : TopModuleCat R}
(φ : M ⟶ N)
:
def
TopModuleCat.isColimitCoker
{R : Type u}
[Ring R]
[TopologicalSpace R]
{M N : TopModuleCat R}
(φ : M ⟶ N)
:
TopModuleCat.coker
is indeed the cokernel in TopModuleCat R
.
Equations
- One or more equations did not get rendered due to their size.