Documentation

Mathlib.Algebra.Category.ModuleCat.Topology.Homology

TopModuleCat is a CategoryWithHomology #

TopModuleCat R, the category of topological R-modules, is not an abelian category. But since the topology on subquotients are well-defined, we can still talk about homology in this category. See the CategoryWithHomology (TopModuleCat R) instance in this file.

@[reducible, inline]
abbrev TopModuleCat.ker {R : Type u} [Ring R] [TopologicalSpace R] {M N : TopModuleCat R} (φ : M N) :

Kernel in TopModuleCat R is the kernel of the linear map with the subspace topology.

Equations
Instances For
    def TopModuleCat.kerι {R : Type u} [Ring R] [TopologicalSpace R] {M N : TopModuleCat R} (φ : M N) :
    ker φ M

    The inclusion map from the kernel in TopModuleCat R.

    Equations
    Instances For
      @[simp]
      @[simp]
      theorem TopModuleCat.kerι_apply {R : Type u} [Ring R] [TopologicalSpace R] {M N : TopModuleCat R} (φ : M N) (x : (fun (X : TopModuleCat R) => X.toModuleCat) (ker φ)) :

      TopModuleCat.ker is indeed the kernel in TopModuleCat R.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[reducible, inline]
        abbrev TopModuleCat.coker {R : Type u} [Ring R] [TopologicalSpace R] {M N : TopModuleCat R} (φ : M N) :

        Cokernel in TopModuleCat R is the cokernel of the linear map with the quotient topology.

        Equations
        Instances For
          def TopModuleCat.cokerπ {R : Type u} [Ring R] [TopologicalSpace R] {M N : TopModuleCat R} (φ : M N) :
          N coker φ

          The projection map to the cokernel in TopModuleCat R.

          Equations
          Instances For
            @[simp]
            theorem TopModuleCat.hom_cokerπ {R : Type u} [Ring R] [TopologicalSpace R] {M N : TopModuleCat R} (φ : M N) (x : N.toModuleCat) :

            TopModuleCat.coker is indeed the cokernel in TopModuleCat R.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For