Ring-theoretic results in terms of categorical languages #
instance
localization_unit_isIso
(R : CommRingCat)
:
CategoryTheory.IsIso (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away 1)))
Equations
- ⋯ = ⋯
instance
localization_unit_isIso'
(R : CommRingCat)
:
CategoryTheory.IsIso (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away 1)))
Equations
- ⋯ = ⋯
theorem
IsLocalization.epi
{R : Type u_1}
[CommRing R]
(M : Submonoid R)
(S : Type u_1)
[CommRing S]
[Algebra R S]
[IsLocalization M S]
:
Equations
- ⋯ = ⋯
instance
Localization.epi'
{R : CommRingCat}
(M : Submonoid ↑R)
:
CategoryTheory.Epi (CommRingCat.ofHom (algebraMap (↑R) (Localization M)))
Equations
- ⋯ = ⋯
@[instance 50]
instance
instIsLocalHomαCommRingHomCommRingCatOf
{R : Type u_1}
[CommRing R]
{S : CommRingCat}
(f : CommRingCat.of R ⟶ S)
[IsLocalHom f]
:
Equations
- ⋯ = ⋯
@[instance 50]
instance
instIsLocalHomαCommRingHomCommRingCatOf_1
{R : CommRingCat}
{S : Type u_1}
[CommRing S]
(f : R ⟶ CommRingCat.of S)
[IsLocalHom f]
:
Equations
- ⋯ = ⋯
@[instance 50]
instance
instIsLocalHomHomCommRingCatOfOfαCommRing
{R S : Type u}
[CommRing R]
[CommRing S]
(f : CommRingCat.of R ⟶ CommRingCat.of S)
[IsLocalHom f]
:
Equations
- ⋯ = ⋯
instance
instIsLocalHomαCommRingRingHomOfHomCommRingCat
{R S : CommRingCat}
(f : R ⟶ S)
[IsLocalHom f]
:
Equations
- ⋯ = ⋯
theorem
CommRingCat.isLocalHom_comp
{R S T : CommRingCat}
(f : R ⟶ S)
(g : S ⟶ T)
[IsLocalHom g]
[IsLocalHom f]
:
@[deprecated CommRingCat.isLocalHom_comp]
theorem
CommRingCat.isLocalRingHom_comp
{R S T : CommRingCat}
(f : R ⟶ S)
(g : S ⟶ T)
[IsLocalHom g]
[IsLocalHom f]
:
Alias of CommRingCat.isLocalHom_comp
.
@[deprecated isLocalHom_of_iso]
Alias of isLocalHom_of_iso
.
@[deprecated isLocalHom_of_isIso]
Alias of isLocalHom_of_isIso
.