Documentation

Mathlib.Algebra.Exact

Exactness of a pair #

TODO : #

def Function.Exact {M : Type u_2} {N : Type u_4} {P : Type u_6} (f : MN) (g : NP) [Zero P] :

The maps f and g form an exact pair : g y = 0 iff y belongs to the image of f

Equations
Instances For
    theorem Function.Exact.apply_apply_eq_zero {M : Type u_2} {N : Type u_4} {P : Type u_6} {f : MN} {g : NP} [Zero P] (h : Exact f g) (x : M) :
    g (f x) = 0
    theorem Function.Exact.comp_eq_zero {M : Type u_2} {N : Type u_4} {P : Type u_6} {f : MN} {g : NP} [Zero P] (h : Exact f g) :
    g f = 0
    theorem Function.Exact.of_comp_of_mem_range {M : Type u_2} {N : Type u_4} {P : Type u_6} {f : MN} {g : NP} [Zero P] (h1 : g f = 0) (h2 : ∀ (x : N), g x = 0x Set.range f) :
    Exact f g
    theorem Function.Exact.comp_injective {M : Type u_2} {N : Type u_4} {P : Type u_6} {P' : Type u_7} {f : MN} {g : NP} (g' : PP') [Zero P] [Zero P'] (exact : Exact f g) (inj : Injective g') (h0 : g' 0 = 0) :
    Exact f (g' g)
    theorem Function.Exact.of_comp_eq_zero_of_ker_in_range {M : Type u_2} {N : Type u_4} {P : Type u_6} {f : MN} {g : NP} [Zero P] (hc : g f = 0) (hr : ∀ (y : N), g y = 0y Set.range f) :
    Exact f g
    theorem AddMonoidHom.exact_iff {M : Type u_2} {N : Type u_4} {P : Type u_6} [AddGroup M] [AddGroup N] [AddGroup P] {f : M →+ N} {g : N →+ P} :
    Function.Exact f g g.ker = f.range
    theorem AddMonoidHom.exact_of_comp_eq_zero_of_ker_le_range {M : Type u_2} {N : Type u_4} {P : Type u_6} [AddGroup M] [AddGroup N] [AddGroup P] {f : M →+ N} {g : N →+ P} (h1 : g.comp f = 0) (h2 : g.ker f.range) :
    Function.Exact f g
    theorem AddMonoidHom.exact_of_comp_of_mem_range {M : Type u_2} {N : Type u_4} {P : Type u_6} [AddGroup M] [AddGroup N] [AddGroup P] {f : M →+ N} {g : N →+ P} (h1 : g.comp f = 0) (h2 : ∀ (x : N), g x = 0x f.range) :
    Function.Exact f g
    theorem AddMonoidHom.exact_iff_of_surjective_of_bijective_of_injective {M₁ : Type u_8} {M₂ : Type u_9} {M₃ : Type u_10} {N₁ : Type u_11} {N₂ : Type u_12} {N₃ : Type u_13} [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M₃] [AddCommMonoid N₁] [AddCommMonoid N₂] [AddCommMonoid N₃] (f : M₁ →+ M₂) (g : M₂ →+ M₃) (f' : N₁ →+ N₂) (g' : N₂ →+ N₃) (τ₁ : M₁ →+ N₁) (τ₂ : M₂ →+ N₂) (τ₃ : M₃ →+ N₃) (comm₁₂ : f'.comp τ₁ = τ₂.comp f) (comm₂₃ : g'.comp τ₂ = τ₃.comp g) (h₁ : Function.Surjective τ₁) (h₂ : Function.Bijective τ₂) (h₃ : Function.Injective τ₃) :
    Function.Exact f g Function.Exact f' g'

    When we have a commutative diagram from a sequence of two maps to another, such that the left vertical map is surjective, the middle vertical map is bijective and the right vertical map is injective, then the upper row is exact iff the lower row is. See ShortComplex.exact_iff_of_epi_of_isIso_of_mono in the file Algebra.Homology.ShortComplex.Exact for the categorical version of this result.

    theorem Function.Exact.addMonoidHom_ker_eq {M : Type u_2} {N : Type u_4} {P : Type u_6} [AddGroup M] [AddGroup N] [AddGroup P] {f : M →+ N} {g : N →+ P} (hfg : Exact f g) :
    g.ker = f.range
    theorem Function.Exact.addMonoidHom_comp_eq_zero {M : Type u_2} {N : Type u_4} {P : Type u_6} [AddGroup M] [AddGroup N] [AddGroup P] {f : M →+ N} {g : N →+ P} (h : Exact f g) :
    g.comp f = 0
    theorem Function.Exact.iff_of_ladder_addEquiv {X₁ : Type u_8} {X₂ : Type u_9} {X₃ : Type u_10} {Y₁ : Type u_11} {Y₂ : Type u_12} {Y₃ : Type u_13} [AddCommMonoid X₁] [AddCommMonoid X₂] [AddCommMonoid X₃] [AddCommMonoid Y₁] [AddCommMonoid Y₂] [AddCommMonoid Y₃] (e₁ : X₁ ≃+ Y₁) (e₂ : X₂ ≃+ Y₂) (e₃ : X₃ ≃+ Y₃) {f₁₂ : X₁ →+ X₂} {f₂₃ : X₂ →+ X₃} {g₁₂ : Y₁ →+ Y₂} {g₂₃ : Y₂ →+ Y₃} (comm₁₂ : g₁₂.comp e₁ = (↑e₂).comp f₁₂) (comm₂₃ : g₂₃.comp e₂ = (↑e₃).comp f₂₃) :
    Exact g₁₂ g₂₃ Exact f₁₂ f₂₃
    theorem Function.Exact.of_ladder_addEquiv_of_exact {X₁ : Type u_8} {X₂ : Type u_9} {X₃ : Type u_10} {Y₁ : Type u_11} {Y₂ : Type u_12} {Y₃ : Type u_13} [AddCommMonoid X₁] [AddCommMonoid X₂] [AddCommMonoid X₃] [AddCommMonoid Y₁] [AddCommMonoid Y₂] [AddCommMonoid Y₃] (e₁ : X₁ ≃+ Y₁) (e₂ : X₂ ≃+ Y₂) (e₃ : X₃ ≃+ Y₃) {f₁₂ : X₁ →+ X₂} {f₂₃ : X₂ →+ X₃} {g₁₂ : Y₁ →+ Y₂} {g₂₃ : Y₂ →+ Y₃} (comm₁₂ : g₁₂.comp e₁ = (↑e₂).comp f₁₂) (comm₂₃ : g₂₃.comp e₂ = (↑e₃).comp f₂₃) (H : Exact f₁₂ f₂₃) :
    Exact g₁₂ g₂₃
    theorem Function.Exact.of_ladder_addEquiv_of_exact' {X₁ : Type u_8} {X₂ : Type u_9} {X₃ : Type u_10} {Y₁ : Type u_11} {Y₂ : Type u_12} {Y₃ : Type u_13} [AddCommMonoid X₁] [AddCommMonoid X₂] [AddCommMonoid X₃] [AddCommMonoid Y₁] [AddCommMonoid Y₂] [AddCommMonoid Y₃] (e₁ : X₁ ≃+ Y₁) (e₂ : X₂ ≃+ Y₂) (e₃ : X₃ ≃+ Y₃) {f₁₂ : X₁ →+ X₂} {f₂₃ : X₂ →+ X₃} {g₁₂ : Y₁ →+ Y₂} {g₂₃ : Y₂ →+ Y₃} (comm₁₂ : g₁₂.comp e₁ = (↑e₂).comp f₁₂) (comm₂₃ : g₂₃.comp e₂ = (↑e₃).comp f₂₃) (H : Exact g₁₂ g₂₃) :
    Exact f₁₂ f₂₃
    theorem LinearMap.exact_iff {R : Type u_1} {M : Type u_2} {N : Type u_4} {P : Type u_6} [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N} {g : N →ₗ[R] P} :
    Function.Exact f g ker g = range f
    theorem LinearMap.exact_of_comp_eq_zero_of_ker_le_range {R : Type u_1} {M : Type u_2} {N : Type u_4} {P : Type u_6} [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N} {g : N →ₗ[R] P} (h1 : g ∘ₗ f = 0) (h2 : ker g range f) :
    Function.Exact f g
    theorem LinearMap.exact_of_comp_of_mem_range {R : Type u_1} {M : Type u_2} {N : Type u_4} {P : Type u_6} [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N} {g : N →ₗ[R] P} (h1 : g ∘ₗ f = 0) (h2 : ∀ (x : N), g x = 0x range f) :
    Function.Exact f g
    theorem LinearMap.exact_subtype_mkQ {R : Type u_8} {N : Type u_10} [CommRing R] [AddCommGroup N] [Module R N] (Q : Submodule R N) :
    Function.Exact Q.subtype Q.mkQ
    theorem LinearMap.exact_map_mkQ_range {R : Type u_8} {M : Type u_9} {N : Type u_10} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (f : M →ₗ[R] N) :
    Function.Exact f (range f).mkQ
    theorem LinearMap.exact_subtype_ker_map {R : Type u_8} {N : Type u_10} {P : Type u_11} [CommRing R] [AddCommGroup N] [AddCommGroup P] [Module R N] [Module R P] (g : N →ₗ[R] P) :
    Function.Exact (ker g).subtype g
    theorem LinearEquiv.conj_exact_iff_exact {R : Type u_1} {M : Type u_2} {N : Type u_4} {N' : Type u_5} {P : Type u_6} [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid N'] [AddCommMonoid P] [Module R M] [Module R N] [Module R N'] [Module R P] (f : M →ₗ[R] N) (g : N →ₗ[R] P) (e : N ≃ₗ[R] N') :
    Function.Exact (e ∘ₗ f) (g ∘ₗ e.symm) Function.Exact f g
    theorem Function.Exact.linearMap_ker_eq {R : Type u_1} {M : Type u_2} {N : Type u_4} {P : Type u_6} [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N} {g : N →ₗ[R] P} (hfg : Exact f g) :
    theorem Function.Exact.linearMap_comp_eq_zero {R : Type u_1} {M : Type u_2} {N : Type u_4} {P : Type u_6} [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N} {g : N →ₗ[R] P} (h : Exact f g) :
    g ∘ₗ f = 0
    theorem Function.Surjective.comp_exact_iff_exact {R : Type u_1} {M : Type u_2} {M' : Type u_3} {N : Type u_4} {P : Type u_6} [Semiring R] [AddCommMonoid M] [AddCommMonoid M'] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R M'] [Module R N] [Module R P] {f : M →ₗ[R] N} {g : N →ₗ[R] P} {p : M' →ₗ[R] M} (h : Surjective p) :
    Exact (f ∘ₗ p) g Exact f g
    theorem Function.Injective.comp_exact_iff_exact {R : Type u_1} {M : Type u_2} {N : Type u_4} {P : Type u_6} {P' : Type u_7} [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid P'] [Module R M] [Module R N] [Module R P] [Module R P'] {f : M →ₗ[R] N} {g : N →ₗ[R] P} {i : P →ₗ[R] P'} (h : Injective i) :
    Exact f (i ∘ₗ g) Exact f g
    theorem Function.Exact.iff_of_ladder_linearEquiv {R : Type u_1} {M : Type u_2} {M' : Type u_3} {N : Type u_4} {N' : Type u_5} {P : Type u_6} {P' : Type u_7} [Semiring R] [AddCommMonoid M] [AddCommMonoid M'] [AddCommMonoid N] [AddCommMonoid N'] [AddCommMonoid P] [AddCommMonoid P'] [Module R M] [Module R M'] [Module R N] [Module R N'] [Module R P] [Module R P'] {f₁₂ : M →ₗ[R] N} {f₂₃ : N →ₗ[R] P} {g₁₂ : M' →ₗ[R] N'} {g₂₃ : N' →ₗ[R] P'} {e₁ : M ≃ₗ[R] M'} {e₂ : N ≃ₗ[R] N'} {e₃ : P ≃ₗ[R] P'} (h₁₂ : g₁₂ ∘ₗ e₁ = e₂ ∘ₗ f₁₂) (h₂₃ : g₂₃ ∘ₗ e₂ = e₃ ∘ₗ f₂₃) :
    Exact g₁₂ g₂₃ Exact f₁₂ f₂₃
    theorem Function.Exact.of_ladder_linearEquiv_of_exact {R : Type u_1} {M : Type u_2} {M' : Type u_3} {N : Type u_4} {N' : Type u_5} {P : Type u_6} {P' : Type u_7} [Semiring R] [AddCommMonoid M] [AddCommMonoid M'] [AddCommMonoid N] [AddCommMonoid N'] [AddCommMonoid P] [AddCommMonoid P'] [Module R M] [Module R M'] [Module R N] [Module R N'] [Module R P] [Module R P'] {f₁₂ : M →ₗ[R] N} {f₂₃ : N →ₗ[R] P} {g₁₂ : M' →ₗ[R] N'} {g₂₃ : N' →ₗ[R] P'} {e₁ : M ≃ₗ[R] M'} {e₂ : N ≃ₗ[R] N'} {e₃ : P ≃ₗ[R] P'} (h₁₂ : g₁₂ ∘ₗ e₁ = e₂ ∘ₗ f₁₂) (h₂₃ : g₂₃ ∘ₗ e₂ = e₃ ∘ₗ f₂₃) (H : Exact f₁₂ f₂₃) :
    Exact g₁₂ g₂₃
    noncomputable def Function.Exact.splitSurjectiveEquiv {R : Type u_1} {M : Type u_2} {N : Type u_4} {P : Type u_6} [Semiring R] [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N} {g : N →ₗ[R] P} (h : Exact f g) (hf : Injective f) :
    { l : P →ₗ[R] N // g ∘ₗ l = LinearMap.id } { e : N ≃ₗ[R] M × P // f = e.symm ∘ₗ LinearMap.inl R M P g = LinearMap.snd R M P ∘ₗ e }

    Given an exact sequence 0 → M → N → P, giving a section P → N is equivalent to giving a splitting N ≃ M × P.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      noncomputable def Function.Exact.splitInjectiveEquiv {R : Type u_8} {M : Type u_9} {N : Type u_10} {P : Type u_11} [Semiring R] [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N} {g : N →ₗ[R] P} (h : Exact f g) (hg : Surjective g) :
      { l : N →ₗ[R] M // l ∘ₗ f = LinearMap.id } { e : N ≃ₗ[R] M × P // f = e.symm ∘ₗ LinearMap.inl R M P g = LinearMap.snd R M P ∘ₗ e }

      Given an exact sequence M → N → P → 0, giving a retraction N → M is equivalent to giving a splitting N ≃ M × P.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem Function.Exact.split_tfae' {R : Type u_1} {M : Type u_2} {N : Type u_4} {P : Type u_6} [Semiring R] [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N} {g : N →ₗ[R] P} (h : Exact f g) :
        [Injective f ∃ (l : P →ₗ[R] N), g ∘ₗ l = LinearMap.id, Surjective g ∃ (l : N →ₗ[R] M), l ∘ₗ f = LinearMap.id, ∃ (e : N ≃ₗ[R] M × P), f = e.symm ∘ₗ LinearMap.inl R M P g = LinearMap.snd R M P ∘ₗ e].TFAE
        theorem Function.Exact.split_tfae {R : Type u_8} {M : Type u_9} {N : Type u_10} {P : Type u_11} [Semiring R] [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N} {g : N →ₗ[R] P} (h : Exact f g) (hf : Injective f) (hg : Surjective g) :
        [∃ (l : P →ₗ[R] N), g ∘ₗ l = LinearMap.id, ∃ (l : N →ₗ[R] M), l ∘ₗ f = LinearMap.id, ∃ (e : N ≃ₗ[R] M × P), f = e.symm ∘ₗ LinearMap.inl R M P g = LinearMap.snd R M P ∘ₗ e].TFAE

        Equivalent characterizations of split exact sequences. Also known as the Splitting lemma.

        theorem Function.Exact.inr_fst {R : Type u_1} {M : Type u_2} {N : Type u_4} [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] :
        Exact (LinearMap.inr R M N) (LinearMap.fst R M N)
        theorem Function.Exact.inl_snd {R : Type u_1} {M : Type u_2} {N : Type u_4} [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] :
        Exact (LinearMap.inl R M N) (LinearMap.snd R M N)
        theorem Function.Exact.exact_mapQ_iff {R : Type u_1} {M : Type u_2} {N : Type u_4} {P : Type u_6} [Ring R] [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N} {g : N →ₗ[R] P} (hfg : Exact f g) {p : Submodule R M} {q : Submodule R N} {r : Submodule R P} (hpq : p Submodule.comap f q) (hqr : q Submodule.comap g r) :
        Exact (p.mapQ q f hpq) (q.mapQ r g hqr) LinearMap.range g r Submodule.map g q

        A necessary and sufficient condition for an exact sequence to descend to a quotient.

        theorem LinearMap.exact_iff_of_surjective_of_bijective_of_injective {R : Type u_1} [Ring R] {M₁ : Type u_8} {M₂ : Type u_9} {M₃ : Type u_10} {N₁ : Type u_11} {N₂ : Type u_12} {N₃ : Type u_13} [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M₃] [AddCommMonoid N₁] [AddCommMonoid N₂] [AddCommMonoid N₃] [Module R M₁] [Module R M₂] [Module R M₃] [Module R N₁] [Module R N₂] [Module R N₃] (f : M₁ →ₗ[R] M₂) (g : M₂ →ₗ[R] M₃) (f' : N₁ →ₗ[R] N₂) (g' : N₂ →ₗ[R] N₃) (τ₁ : M₁ →ₗ[R] N₁) (τ₂ : M₂ →ₗ[R] N₂) (τ₃ : M₃ →ₗ[R] N₃) (comm₁₂ : f' ∘ₗ τ₁ = τ₂ ∘ₗ f) (comm₂₃ : g' ∘ₗ τ₂ = τ₃ ∘ₗ g) (h₁ : Function.Surjective τ₁) (h₂ : Function.Bijective τ₂) (h₃ : Function.Injective τ₃) :
        Function.Exact f g Function.Exact f' g'

        When we have a commutative diagram from a sequence of two linear maps to another, such that the left vertical map is surjective, the middle vertical map is bijective and the right vertical map is injective, then the upper row is exact iff the lower row is. See ShortComplex.exact_iff_of_epi_of_isIso_of_mono in the file Algebra.Homology.ShortComplex.Exact for the categorical version of this result.

        theorem LinearMap.surjective_range_liftQ {R : Type u_1} {M : Type u_2} {N : Type u_4} {P : Type u_6} [Ring R] [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N} {g : N →ₗ[R] P} (h : range f ker g) (hg : Function.Surjective g) :
        Function.Surjective ((range f).liftQ g h)
        theorem LinearMap.ker_eq_bot_range_liftQ_iff {R : Type u_1} {M : Type u_2} {N : Type u_4} {P : Type u_6} [Ring R] [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N} {g : N →ₗ[R] P} (h : range f ker g) :
        ker ((range f).liftQ g h) = ker g = range f
        theorem LinearMap.injective_range_liftQ_of_exact {R : Type u_1} {M : Type u_2} {N : Type u_4} {P : Type u_6} [Ring R] [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N} {g : N →ₗ[R] P} (h : Function.Exact f g) :
        Function.Injective ((range f).liftQ g )
        noncomputable def Function.Exact.linearEquivOfSurjective {R : Type u_1} {M : Type u_2} {N : Type u_4} {P : Type u_6} [Ring R] [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N} {g : N →ₗ[R] P} (h : Exact f g) (hg : Surjective g) :

        The linear equivalence (N ⧸ LinearMap.range f) ≃ₗ[A] P associated to an exact sequence M → N → P → 0 of R-modules.

        Equations
        Instances For
          @[simp]
          theorem Function.Exact.linearEquivOfSurjective_apply {R : Type u_1} {M : Type u_2} {N : Type u_4} {P : Type u_6} [Ring R] [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N} {g : N →ₗ[R] P} (h : Exact f g) (hg : Surjective g) (a✝ : N LinearMap.range f) :
          (h.linearEquivOfSurjective hg) a✝ = ((LinearMap.range f).liftQ g ) a✝