Documentation

Mathlib.Algebra.Field.Opposite

Field structure on the multiplicative/additive opposite #

Equations
Equations
Equations
Equations
@[simp]
theorem MulOpposite.op_nnratCast {α : Type u_1} [NNRatCast α] (q : ℚ≥0) :
op q = q
@[simp]
theorem AddOpposite.op_nnratCast {α : Type u_1} [NNRatCast α] (q : ℚ≥0) :
op q = q
@[simp]
theorem MulOpposite.unop_nnratCast {α : Type u_1} [NNRatCast α] (q : ℚ≥0) :
unop q = q
@[simp]
theorem AddOpposite.unop_nnratCast {α : Type u_1} [NNRatCast α] (q : ℚ≥0) :
unop q = q
@[simp]
theorem MulOpposite.op_ratCast {α : Type u_1} [RatCast α] (q : ) :
op q = q
@[simp]
theorem AddOpposite.op_ratCast {α : Type u_1} [RatCast α] (q : ) :
op q = q
@[simp]
theorem MulOpposite.unop_ratCast {α : Type u_1} [RatCast α] (q : ) :
unop q = q
@[simp]
theorem AddOpposite.unop_ratCast {α : Type u_1} [RatCast α] (q : ) :
unop q = q