Documentation

Mathlib.Algebra.Group.Equiv.TypeTags

Additive and multiplicative equivalences associated to Multiplicative and Additive. #

@[simp]
theorem AddEquiv.toMultiplicative_symm_apply_symm_apply {G : Type u_2} {H : Type u_3} [AddZeroClass G] [AddZeroClass H] (f : Multiplicative G ≃* Multiplicative H) (a : H) :
(AddEquiv.toMultiplicative.symm f).symm a = (AddMonoidHom.toMultiplicative.symm f.symm.toMonoidHom) a
@[simp]
theorem AddEquiv.toMultiplicative_apply_symm_apply {G : Type u_2} {H : Type u_3} [AddZeroClass G] [AddZeroClass H] (f : G ≃+ H) (a : Multiplicative H) :
(AddEquiv.toMultiplicative f).symm a = (AddMonoidHom.toMultiplicative f.symm.toAddMonoidHom) a
@[simp]
theorem AddEquiv.toMultiplicative_symm_apply_apply {G : Type u_2} {H : Type u_3} [AddZeroClass G] [AddZeroClass H] (f : Multiplicative G ≃* Multiplicative H) (a : G) :
(AddEquiv.toMultiplicative.symm f) a = (AddMonoidHom.toMultiplicative.symm f.toMonoidHom) a
@[simp]
theorem AddEquiv.toMultiplicative_apply_apply {G : Type u_2} {H : Type u_3} [AddZeroClass G] [AddZeroClass H] (f : G ≃+ H) (a : Multiplicative G) :
(AddEquiv.toMultiplicative f) a = (AddMonoidHom.toMultiplicative f.toAddMonoidHom) a

Reinterpret G ≃+ H as Multiplicative G ≃* Multiplicative H.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem MulEquiv.toAdditive_symm_apply_symm_apply {G : Type u_2} {H : Type u_3} [MulOneClass G] [MulOneClass H] (f : Additive G ≃+ Additive H) (a : H) :
    (MulEquiv.toAdditive.symm f).symm a = (MonoidHom.toAdditive.symm f.symm.toAddMonoidHom) a
    @[simp]
    theorem MulEquiv.toAdditive_apply_symm_apply {G : Type u_2} {H : Type u_3} [MulOneClass G] [MulOneClass H] (f : G ≃* H) (a : Additive H) :
    (MulEquiv.toAdditive f).symm a = (MonoidHom.toAdditive f.symm.toMonoidHom) a
    @[simp]
    theorem MulEquiv.toAdditive_apply_apply {G : Type u_2} {H : Type u_3} [MulOneClass G] [MulOneClass H] (f : G ≃* H) (a : Additive G) :
    (MulEquiv.toAdditive f) a = (MonoidHom.toAdditive f.toMonoidHom) a
    @[simp]
    theorem MulEquiv.toAdditive_symm_apply_apply {G : Type u_2} {H : Type u_3} [MulOneClass G] [MulOneClass H] (f : Additive G ≃+ Additive H) (a : G) :
    (MulEquiv.toAdditive.symm f) a = (MonoidHom.toAdditive.symm f.toAddMonoidHom) a
    def MulEquiv.toAdditive {G : Type u_2} {H : Type u_3} [MulOneClass G] [MulOneClass H] :

    Reinterpret G ≃* H as Additive G ≃+ Additive H.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem AddEquiv.toMultiplicative'_symm_apply_symm_apply {G : Type u_2} {H : Type u_3} [MulOneClass G] [AddZeroClass H] (f : G ≃* Multiplicative H) (a : H) :
      (AddEquiv.toMultiplicative'.symm f).symm a = (AddMonoidHom.toMultiplicative''.symm f.symm.toMonoidHom) a
      @[simp]
      theorem AddEquiv.toMultiplicative'_symm_apply_apply {G : Type u_2} {H : Type u_3} [MulOneClass G] [AddZeroClass H] (f : G ≃* Multiplicative H) (a : Additive G) :
      (AddEquiv.toMultiplicative'.symm f) a = (AddMonoidHom.toMultiplicative'.symm f.toMonoidHom) a
      @[simp]
      theorem AddEquiv.toMultiplicative'_apply_symm_apply {G : Type u_2} {H : Type u_3} [MulOneClass G] [AddZeroClass H] (f : Additive G ≃+ H) (a : Multiplicative H) :
      (AddEquiv.toMultiplicative' f).symm a = (AddMonoidHom.toMultiplicative'' f.symm.toAddMonoidHom) a
      @[simp]
      theorem AddEquiv.toMultiplicative'_apply_apply {G : Type u_2} {H : Type u_3} [MulOneClass G] [AddZeroClass H] (f : Additive G ≃+ H) (a : G) :
      (AddEquiv.toMultiplicative' f) a = (AddMonoidHom.toMultiplicative' f.toAddMonoidHom) a

      Reinterpret Additive G ≃+ H as G ≃* Multiplicative H.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[reducible, inline]

        Reinterpret G ≃* Multiplicative H as Additive G ≃+ H as.

        Equations
        • MulEquiv.toAdditive' = AddEquiv.toMultiplicative'.symm
        Instances For
          @[simp]
          theorem AddEquiv.toMultiplicative''_apply_apply {G : Type u_2} {H : Type u_3} [AddZeroClass G] [MulOneClass H] (f : G ≃+ Additive H) (a : Multiplicative G) :
          (AddEquiv.toMultiplicative'' f) a = (AddMonoidHom.toMultiplicative'' f.toAddMonoidHom) a
          @[simp]
          theorem AddEquiv.toMultiplicative''_symm_apply_symm_apply {G : Type u_2} {H : Type u_3} [AddZeroClass G] [MulOneClass H] (f : Multiplicative G ≃* H) (a : Additive H) :
          (AddEquiv.toMultiplicative''.symm f).symm a = (AddMonoidHom.toMultiplicative'.symm f.symm.toMonoidHom) a
          @[simp]
          theorem AddEquiv.toMultiplicative''_apply_symm_apply {G : Type u_2} {H : Type u_3} [AddZeroClass G] [MulOneClass H] (f : G ≃+ Additive H) (a : H) :
          (AddEquiv.toMultiplicative'' f).symm a = (AddMonoidHom.toMultiplicative' f.symm.toAddMonoidHom) a
          @[simp]
          theorem AddEquiv.toMultiplicative''_symm_apply_apply {G : Type u_2} {H : Type u_3} [AddZeroClass G] [MulOneClass H] (f : Multiplicative G ≃* H) (a : G) :
          (AddEquiv.toMultiplicative''.symm f) a = (AddMonoidHom.toMultiplicative''.symm f.toMonoidHom) a

          Reinterpret G ≃+ Additive H as Multiplicative G ≃* H.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[reducible, inline]

            Reinterpret Multiplicative G ≃* H as G ≃+ Additive H as.

            Equations
            • MulEquiv.toAdditive'' = AddEquiv.toMultiplicative''.symm
            Instances For
              @[simp]
              theorem monoidEndToAdditive_apply_apply (M : Type u_4) [MulOneClass M] (f : M →* M) (a : Additive M) :
              ((monoidEndToAdditive M) f) a = Additive.ofMul (f (Additive.toMul a))
              @[simp]
              theorem monoidEndToAdditive_symm_apply_apply (M : Type u_4) [MulOneClass M] (f : Additive M →+ Additive M) (a : M) :
              ((monoidEndToAdditive M).symm f) a = Additive.toMul (f (Additive.ofMul a))

              Multiplicative equivalence between multiplicative endomorphisms of a MulOneClass M and additive endomorphisms of Additive M.

              Equations
              Instances For
                @[simp]
                theorem addMonoidEndToMultiplicative_symm_apply_apply (A : Type u_4) [AddZeroClass A] (f : Multiplicative A →* Multiplicative A) (a : A) :
                ((addMonoidEndToMultiplicative A).symm f) a = Multiplicative.toAdd (f (Multiplicative.ofAdd a))
                @[simp]
                theorem addMonoidEndToMultiplicative_apply_apply (A : Type u_4) [AddZeroClass A] (f : A →+ A) (a : Multiplicative A) :
                ((addMonoidEndToMultiplicative A) f) a = Multiplicative.ofAdd (f (Multiplicative.toAdd a))

                Multiplicative equivalence between additive endomorphisms of an AddZeroClass A and multiplicative endomorphisms of Multiplicative A.

                Equations
                Instances For
                  @[simp]
                  theorem MulEquiv.piMultiplicative_apply {ι : Type u_1} (K : ιType u_4) [(i : ι) → Add (K i)] (x : Multiplicative ((i : ι) → K i)) (i : ι) :
                  (MulEquiv.piMultiplicative K) x i = Multiplicative.ofAdd (Multiplicative.toAdd x i)
                  @[simp]
                  theorem MulEquiv.piMultiplicative_symm_apply {ι : Type u_1} (K : ιType u_4) [(i : ι) → Add (K i)] (x : (i : ι) → Multiplicative (K i)) :
                  (MulEquiv.piMultiplicative K).symm x = Multiplicative.ofAdd fun (i : ι) => Multiplicative.toAdd (x i)
                  def MulEquiv.piMultiplicative {ι : Type u_1} (K : ιType u_4) [(i : ι) → Add (K i)] :
                  Multiplicative ((i : ι) → K i) ≃* ((i : ι) → Multiplicative (K i))

                  Multiplicative (∀ i : ι, K i) is equivalent to ∀ i : ι, Multiplicative (K i).

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    @[reducible, inline]
                    abbrev MulEquiv.funMultiplicative (ι : Type u_1) (G : Type u_2) [Add G] :
                    Multiplicative (ιG) ≃* (ιMultiplicative G)

                    Multiplicative (ι → G) is equivalent to ι → Multiplicative G.

                    Equations
                    Instances For
                      @[simp]
                      theorem AddEquiv.piAdditive_apply {ι : Type u_1} (K : ιType u_4) [(i : ι) → Mul (K i)] (x : Additive ((i : ι) → K i)) (i : ι) :
                      (AddEquiv.piAdditive K) x i = Additive.ofMul (Additive.toMul x i)
                      @[simp]
                      theorem AddEquiv.piAdditive_symm_apply {ι : Type u_1} (K : ιType u_4) [(i : ι) → Mul (K i)] (x : (i : ι) → Additive (K i)) :
                      (AddEquiv.piAdditive K).symm x = Additive.ofMul fun (i : ι) => Additive.toMul (x i)
                      def AddEquiv.piAdditive {ι : Type u_1} (K : ιType u_4) [(i : ι) → Mul (K i)] :
                      Additive ((i : ι) → K i) ≃+ ((i : ι) → Additive (K i))

                      Additive (∀ i : ι, K i) is equivalent to ∀ i : ι, Additive (K i).

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        @[reducible, inline]
                        abbrev AddEquiv.funAdditive (ι : Type u_1) (G : Type u_2) [Mul G] :
                        Additive (ιG) ≃+ (ιAdditive G)

                        Additive (ι → G) is equivalent to ι → Additive G.

                        Equations
                        Instances For
                          @[simp]
                          theorem AddEquiv.additiveMultiplicative_apply (G : Type u_2) [AddZeroClass G] (a : Additive (Multiplicative G)) :
                          (AddEquiv.additiveMultiplicative G) a = Multiplicative.toAdd (Additive.toMul a)
                          @[simp]
                          theorem AddEquiv.additiveMultiplicative_symm_apply (G : Type u_2) [AddZeroClass G] (a : G) :
                          (AddEquiv.additiveMultiplicative G).symm a = Additive.ofMul (Multiplicative.ofAdd a)

                          Additive (Multiplicative G) is just G.

                          Equations
                          Instances For
                            @[simp]
                            theorem MulEquiv.multiplicativeAdditive_symm_apply (H : Type u_3) [MulOneClass H] (a : H) :
                            (MulEquiv.multiplicativeAdditive H).symm a = Multiplicative.ofAdd (Additive.ofMul a)
                            @[simp]
                            theorem MulEquiv.multiplicativeAdditive_apply (H : Type u_3) [MulOneClass H] (a : Multiplicative (Additive H)) :
                            (MulEquiv.multiplicativeAdditive H) a = Additive.toMul (Multiplicative.toAdd a)

                            Multiplicative (Additive H) is just H.

                            Equations
                            Instances For
                              @[simp]
                              theorem MulEquiv.prodMultiplicative_symm_apply (G : Type u_2) (H : Type u_3) [Add G] [Add H] :
                              ∀ (x : Multiplicative G × Multiplicative H), (MulEquiv.prodMultiplicative G H).symm x = match x with | (x, y) => Multiplicative.ofAdd (Multiplicative.toAdd x, Multiplicative.toAdd y)
                              @[simp]
                              theorem MulEquiv.prodMultiplicative_apply (G : Type u_2) (H : Type u_3) [Add G] [Add H] (x : Multiplicative (G × H)) :
                              (MulEquiv.prodMultiplicative G H) x = (Multiplicative.ofAdd (Multiplicative.toAdd x).1, Multiplicative.ofAdd (Multiplicative.toAdd x).2)

                              Multiplicative (G × H) is equivalent to Multiplicative G × Multiplicative H.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For
                                @[simp]
                                theorem AddEquiv.prodAdditive_apply (G : Type u_2) (H : Type u_3) [Mul G] [Mul H] (x : Additive (G × H)) :
                                (AddEquiv.prodAdditive G H) x = (Additive.ofMul (Additive.toMul x).1, Additive.ofMul (Additive.toMul x).2)
                                @[simp]
                                theorem AddEquiv.prodAdditive_symm_apply (G : Type u_2) (H : Type u_3) [Mul G] [Mul H] :
                                ∀ (x : Additive G × Additive H), (AddEquiv.prodAdditive G H).symm x = match x with | (x, y) => Additive.ofMul (Additive.toMul x, Additive.toMul y)
                                def AddEquiv.prodAdditive (G : Type u_2) (H : Type u_3) [Mul G] [Mul H] :

                                Additive (G × H) is equivalent to Additive G × Additive H.

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For