Documentation

Mathlib.Algebra.Group.Pointwise.Finset.BigOperators

Pointwise big operators on finsets #

This file contains basic results on applying big operators (product and sum) on finsets.

Implementation notes #

We put all instances in the locale Pointwise, so that these instances are not available by default. Note that we do not mark them as reducible (as argued by note [reducible non-instances]) since we expect the locale to be open whenever the instances are actually used (and making the instances reducible changes the behavior of simp.

Tags #

finset multiplication, finset addition, pointwise addition, pointwise multiplication, pointwise subtraction

@[simp]
theorem Finset.coe_prod {α : Type u_1} {ι : Type u_2} [CommMonoid α] [DecidableEq α] (s : Finset ι) (f : ιFinset α) :
(∏ is, f i) = is, (f i)
@[simp]
theorem Finset.coe_sum {α : Type u_1} {ι : Type u_2} [AddCommMonoid α] [DecidableEq α] (s : Finset ι) (f : ιFinset α) :
(∑ is, f i) = is, (f i)
@[simp]
theorem Finset.prod_inv_index {α : Type u_1} {ι : Type u_2} [CommMonoid α] [DecidableEq ι] [InvolutiveInv ι] (s : Finset ι) (f : ια) :
is⁻¹, f i = is, f i⁻¹
@[simp]
theorem Finset.sum_neg_index {α : Type u_1} {ι : Type u_2} [AddCommMonoid α] [DecidableEq ι] [InvolutiveNeg ι] (s : Finset ι) (f : ια) :
i-s, f i = is, f (-i)
@[simp]
theorem Finset.prod_neg_index {α : Type u_1} {ι : Type u_2} [CommMonoid α] [DecidableEq ι] [InvolutiveNeg ι] (s : Finset ι) (f : ια) :
i-s, f i = is, f (-i)
@[simp]
theorem Finset.sum_inv_index {α : Type u_1} {ι : Type u_2} [AddCommMonoid α] [DecidableEq ι] [InvolutiveInv ι] (s : Finset ι) (f : ια) :
is⁻¹, f i = is, f i⁻¹