Documentation

Mathlib.Algebra.Group.Pointwise.Finset.Basic

Pointwise operations of finsets #

This file defines pointwise algebraic operations on finsets.

Main declarations #

For finsets s and t:

For α a semigroup/monoid, Finset α is a semigroup/monoid. As an unfortunate side effect, this means that n • s, where n : ℕ, is ambiguous between pointwise scaling and repeated pointwise addition; the former has (2 : ℕ) • {1, 2} = {2, 4}, while the latter has (2 : ℕ) • {1, 2} = {2, 3, 4}. See note [pointwise nat action].

Implementation notes #

We put all instances in the locale Pointwise, so that these instances are not available by default. Note that we do not mark them as reducible (as argued by note [reducible non-instances]) since we expect the locale to be open whenever the instances are actually used (and making the instances reducible changes the behavior of simp.

Tags #

finset multiplication, finset addition, pointwise addition, pointwise multiplication, pointwise subtraction

0/1 as finsets #

def Finset.one {α : Type u_2} [One α] :
One (Finset α)

The finset 1 : Finset α is defined as {1} in locale Pointwise.

Equations
  • Finset.one = { one := {1} }
Instances For
    def Finset.zero {α : Type u_2} [Zero α] :

    The finset 0 : Finset α is defined as {0} in locale Pointwise.

    Equations
    • Finset.zero = { zero := {0} }
    Instances For
      @[simp]
      theorem Finset.mem_one {α : Type u_2} [One α] {a : α} :
      a 1 a = 1
      @[simp]
      theorem Finset.mem_zero {α : Type u_2} [Zero α] {a : α} :
      a 0 a = 0
      @[simp]
      theorem Finset.coe_one {α : Type u_2} [One α] :
      1 = 1
      @[simp]
      theorem Finset.coe_zero {α : Type u_2} [Zero α] :
      0 = 0
      @[simp]
      theorem Finset.coe_eq_one {α : Type u_2} [One α] {s : Finset α} :
      s = 1 s = 1
      @[simp]
      theorem Finset.coe_eq_zero {α : Type u_2} [Zero α] {s : Finset α} :
      s = 0 s = 0
      @[simp]
      theorem Finset.one_subset {α : Type u_2} [One α] {s : Finset α} :
      1 s 1 s
      @[simp]
      theorem Finset.zero_subset {α : Type u_2} [Zero α] {s : Finset α} :
      0 s 0 s
      theorem Finset.singleton_one {α : Type u_2} [One α] :
      {1} = 1
      theorem Finset.singleton_zero {α : Type u_2} [Zero α] :
      {0} = 0
      theorem Finset.one_mem_one {α : Type u_2} [One α] :
      1 1
      theorem Finset.zero_mem_zero {α : Type u_2} [Zero α] :
      0 0
      @[simp]
      theorem Finset.one_nonempty {α : Type u_2} [One α] :
      @[simp]
      theorem Finset.zero_nonempty {α : Type u_2} [Zero α] :
      @[simp]
      theorem Finset.map_one {α : Type u_2} {β : Type u_3} [One α] {f : α β} :
      Finset.map f 1 = {f 1}
      @[simp]
      theorem Finset.map_zero {α : Type u_2} {β : Type u_3} [Zero α] {f : α β} :
      Finset.map f 0 = {f 0}
      @[simp]
      theorem Finset.image_one {α : Type u_2} {β : Type u_3} [One α] [DecidableEq β] {f : αβ} :
      Finset.image f 1 = {f 1}
      @[simp]
      theorem Finset.image_zero {α : Type u_2} {β : Type u_3} [Zero α] [DecidableEq β] {f : αβ} :
      Finset.image f 0 = {f 0}
      theorem Finset.subset_one_iff_eq {α : Type u_2} [One α] {s : Finset α} :
      s 1 s = s = 1
      theorem Finset.subset_zero_iff_eq {α : Type u_2} [Zero α] {s : Finset α} :
      s 0 s = s = 0
      theorem Finset.Nonempty.subset_one_iff {α : Type u_2} [One α] {s : Finset α} (h : s.Nonempty) :
      s 1 s = 1
      theorem Finset.Nonempty.subset_zero_iff {α : Type u_2} [Zero α] {s : Finset α} (h : s.Nonempty) :
      s 0 s = 0
      @[simp]
      theorem Finset.card_one {α : Type u_2} [One α] :
      @[simp]
      theorem Finset.card_zero {α : Type u_2} [Zero α] :
      def Finset.singletonOneHom {α : Type u_2} [One α] :
      OneHom α (Finset α)

      The singleton operation as a OneHom.

      Equations
      • Finset.singletonOneHom = { toFun := singleton, map_one' := }
      Instances For
        def Finset.singletonZeroHom {α : Type u_2} [Zero α] :
        ZeroHom α (Finset α)

        The singleton operation as a ZeroHom.

        Equations
        • Finset.singletonZeroHom = { toFun := singleton, map_zero' := }
        Instances For
          @[simp]
          theorem Finset.coe_singletonOneHom {α : Type u_2} [One α] :
          Finset.singletonOneHom = singleton
          @[simp]
          theorem Finset.coe_singletonZeroHom {α : Type u_2} [Zero α] :
          Finset.singletonZeroHom = singleton
          @[simp]
          theorem Finset.singletonOneHom_apply {α : Type u_2} [One α] (a : α) :
          Finset.singletonOneHom a = {a}
          @[simp]
          theorem Finset.singletonZeroHom_apply {α : Type u_2} [Zero α] (a : α) :
          Finset.singletonZeroHom a = {a}
          def Finset.imageOneHom {F : Type u_1} {α : Type u_2} {β : Type u_3} [One α] [DecidableEq β] [One β] [FunLike F α β] [OneHomClass F α β] (f : F) :
          OneHom (Finset α) (Finset β)

          Lift a OneHom to Finset via image.

          Equations
          Instances For
            def Finset.imageZeroHom {F : Type u_1} {α : Type u_2} {β : Type u_3} [Zero α] [DecidableEq β] [Zero β] [FunLike F α β] [ZeroHomClass F α β] (f : F) :

            Lift a ZeroHom to Finset via image

            Equations
            Instances For
              @[simp]
              theorem Finset.imageOneHom_apply {F : Type u_1} {α : Type u_2} {β : Type u_3} [One α] [DecidableEq β] [One β] [FunLike F α β] [OneHomClass F α β] (f : F) (s : Finset α) :
              @[simp]
              theorem Finset.imageZeroHom_apply {F : Type u_1} {α : Type u_2} {β : Type u_3} [Zero α] [DecidableEq β] [Zero β] [FunLike F α β] [ZeroHomClass F α β] (f : F) (s : Finset α) :
              @[simp]
              theorem Finset.sup_one {α : Type u_2} {β : Type u_3} [One α] [SemilatticeSup β] [OrderBot β] (f : αβ) :
              Finset.sup 1 f = f 1
              @[simp]
              theorem Finset.sup_zero {α : Type u_2} {β : Type u_3} [Zero α] [SemilatticeSup β] [OrderBot β] (f : αβ) :
              Finset.sup 0 f = f 0
              @[simp]
              theorem Finset.sup'_one {α : Type u_2} {β : Type u_3} [One α] [SemilatticeSup β] (f : αβ) :
              Finset.sup' 1 f = f 1
              @[simp]
              theorem Finset.sup'_zero {α : Type u_2} {β : Type u_3} [Zero α] [SemilatticeSup β] (f : αβ) :
              Finset.sup' 0 f = f 0
              @[simp]
              theorem Finset.inf_one {α : Type u_2} {β : Type u_3} [One α] [SemilatticeInf β] [OrderTop β] (f : αβ) :
              Finset.inf 1 f = f 1
              @[simp]
              theorem Finset.inf_zero {α : Type u_2} {β : Type u_3} [Zero α] [SemilatticeInf β] [OrderTop β] (f : αβ) :
              Finset.inf 0 f = f 0
              @[simp]
              theorem Finset.inf'_one {α : Type u_2} {β : Type u_3} [One α] [SemilatticeInf β] (f : αβ) :
              Finset.inf' 1 f = f 1
              @[simp]
              theorem Finset.inf'_zero {α : Type u_2} {β : Type u_3} [Zero α] [SemilatticeInf β] (f : αβ) :
              Finset.inf' 0 f = f 0
              @[simp]
              theorem Finset.max_one {α : Type u_2} [One α] [LinearOrder α] :
              @[simp]
              theorem Finset.max_zero {α : Type u_2} [Zero α] [LinearOrder α] :
              @[simp]
              theorem Finset.min_one {α : Type u_2} [One α] [LinearOrder α] :
              @[simp]
              theorem Finset.min_zero {α : Type u_2} [Zero α] [LinearOrder α] :
              @[simp]
              theorem Finset.max'_one {α : Type u_2} [One α] [LinearOrder α] :
              Finset.max' 1 = 1
              @[simp]
              theorem Finset.max'_zero {α : Type u_2} [Zero α] [LinearOrder α] :
              Finset.max' 0 = 0
              @[simp]
              theorem Finset.min'_one {α : Type u_2} [One α] [LinearOrder α] :
              Finset.min' 1 = 1
              @[simp]
              theorem Finset.min'_zero {α : Type u_2} [Zero α] [LinearOrder α] :
              Finset.min' 0 = 0
              @[simp]
              theorem Finset.image_op_one {α : Type u_2} [One α] [DecidableEq α] :
              Finset.image MulOpposite.op 1 = 1
              @[simp]
              theorem Finset.image_op_zero {α : Type u_2} [Zero α] [DecidableEq α] :
              Finset.image AddOpposite.op 0 = 0
              @[simp]
              theorem Finset.map_op_one {α : Type u_2} [One α] :
              Finset.map MulOpposite.opEquiv.toEmbedding 1 = 1
              @[simp]
              theorem Finset.map_op_zero {α : Type u_2} [Zero α] :
              Finset.map AddOpposite.opEquiv.toEmbedding 0 = 0

              Finset negation/inversion #

              def Finset.inv {α : Type u_2} [DecidableEq α] [Inv α] :
              Inv (Finset α)

              The pointwise inversion of finset s⁻¹ is defined as {x⁻¹ | x ∈ s} in locale Pointwise.

              Equations
              Instances For
                def Finset.neg {α : Type u_2} [DecidableEq α] [Neg α] :
                Neg (Finset α)

                The pointwise negation of finset -s is defined as {-x | x ∈ s} in locale Pointwise.

                Equations
                Instances For
                  theorem Finset.inv_def {α : Type u_2} [DecidableEq α] [Inv α] {s : Finset α} :
                  s⁻¹ = Finset.image (fun (x : α) => x⁻¹) s
                  theorem Finset.neg_def {α : Type u_2} [DecidableEq α] [Neg α] {s : Finset α} :
                  -s = Finset.image (fun (x : α) => -x) s
                  theorem Finset.image_inv {α : Type u_2} [DecidableEq α] [Inv α] {s : Finset α} :
                  Finset.image (fun (x : α) => x⁻¹) s = s⁻¹
                  theorem Finset.image_neg {α : Type u_2} [DecidableEq α] [Neg α] {s : Finset α} :
                  Finset.image (fun (x : α) => -x) s = -s
                  theorem Finset.mem_inv {α : Type u_2} [DecidableEq α] [Inv α] {s : Finset α} {x : α} :
                  x s⁻¹ ys, y⁻¹ = x
                  theorem Finset.mem_neg {α : Type u_2} [DecidableEq α] [Neg α] {s : Finset α} {x : α} :
                  x -s ys, -y = x
                  theorem Finset.inv_mem_inv {α : Type u_2} [DecidableEq α] [Inv α] {s : Finset α} {a : α} (ha : a s) :
                  theorem Finset.neg_mem_neg {α : Type u_2} [DecidableEq α] [Neg α] {s : Finset α} {a : α} (ha : a s) :
                  -a -s
                  theorem Finset.card_inv_le {α : Type u_2} [DecidableEq α] [Inv α] {s : Finset α} :
                  s⁻¹.card s.card
                  theorem Finset.card_neg_le {α : Type u_2} [DecidableEq α] [Neg α] {s : Finset α} :
                  (-s).card s.card
                  @[simp]
                  theorem Finset.inv_empty {α : Type u_2} [DecidableEq α] [Inv α] :
                  @[simp]
                  theorem Finset.neg_empty {α : Type u_2} [DecidableEq α] [Neg α] :
                  @[simp]
                  theorem Finset.inv_nonempty_iff {α : Type u_2} [DecidableEq α] [Inv α] {s : Finset α} :
                  s⁻¹.Nonempty s.Nonempty
                  @[simp]
                  theorem Finset.neg_nonempty_iff {α : Type u_2} [DecidableEq α] [Neg α] {s : Finset α} :
                  (-s).Nonempty s.Nonempty
                  theorem Finset.Nonempty.of_inv {α : Type u_2} [DecidableEq α] [Inv α] {s : Finset α} :
                  s⁻¹.Nonemptys.Nonempty

                  Alias of the forward direction of Finset.inv_nonempty_iff.

                  theorem Finset.Nonempty.inv {α : Type u_2} [DecidableEq α] [Inv α] {s : Finset α} :
                  s.Nonemptys⁻¹.Nonempty

                  Alias of the reverse direction of Finset.inv_nonempty_iff.

                  theorem Finset.Nonempty.neg {α : Type u_2} [DecidableEq α] [Neg α] {s : Finset α} :
                  s.Nonempty(-s).Nonempty
                  theorem Finset.Nonempty.of_neg {α : Type u_2} [DecidableEq α] [Neg α] {s : Finset α} :
                  (-s).Nonemptys.Nonempty
                  @[simp]
                  theorem Finset.inv_eq_empty {α : Type u_2} [DecidableEq α] [Inv α] {s : Finset α} :
                  @[simp]
                  theorem Finset.neg_eq_empty {α : Type u_2} [DecidableEq α] [Neg α] {s : Finset α} :
                  -s = s =
                  theorem Finset.inv_subset_inv {α : Type u_2} [DecidableEq α] [Inv α] {s t : Finset α} (h : s t) :
                  theorem Finset.neg_subset_neg {α : Type u_2} [DecidableEq α] [Neg α] {s t : Finset α} (h : s t) :
                  -s -t
                  @[simp]
                  theorem Finset.inv_singleton {α : Type u_2} [DecidableEq α] [Inv α] (a : α) :
                  {a}⁻¹ = {a⁻¹}
                  @[simp]
                  theorem Finset.neg_singleton {α : Type u_2} [DecidableEq α] [Neg α] (a : α) :
                  -{a} = {-a}
                  @[simp]
                  theorem Finset.inv_insert {α : Type u_2} [DecidableEq α] [Inv α] (a : α) (s : Finset α) :
                  @[simp]
                  theorem Finset.neg_insert {α : Type u_2} [DecidableEq α] [Neg α] (a : α) (s : Finset α) :
                  -insert a s = insert (-a) (-s)
                  @[simp]
                  theorem Finset.sup_inv {α : Type u_2} {β : Type u_3} [DecidableEq α] [Inv α] [SemilatticeSup β] [OrderBot β] (s : Finset α) (f : αβ) :
                  s⁻¹.sup f = s.sup fun (x : α) => f x⁻¹
                  @[simp]
                  theorem Finset.sup_neg {α : Type u_2} {β : Type u_3} [DecidableEq α] [Neg α] [SemilatticeSup β] [OrderBot β] (s : Finset α) (f : αβ) :
                  (-s).sup f = s.sup fun (x : α) => f (-x)
                  @[simp]
                  theorem Finset.sup'_inv {α : Type u_2} {β : Type u_3} [DecidableEq α] [Inv α] [SemilatticeSup β] {s : Finset α} (hs : s⁻¹.Nonempty) (f : αβ) :
                  s⁻¹.sup' hs f = s.sup' fun (x : α) => f x⁻¹
                  @[simp]
                  theorem Finset.sup'_neg {α : Type u_2} {β : Type u_3} [DecidableEq α] [Neg α] [SemilatticeSup β] {s : Finset α} (hs : (-s).Nonempty) (f : αβ) :
                  (-s).sup' hs f = s.sup' fun (x : α) => f (-x)
                  @[simp]
                  theorem Finset.inf_inv {α : Type u_2} {β : Type u_3} [DecidableEq α] [Inv α] [SemilatticeInf β] [OrderTop β] (s : Finset α) (f : αβ) :
                  s⁻¹.inf f = s.inf fun (x : α) => f x⁻¹
                  @[simp]
                  theorem Finset.inf_neg {α : Type u_2} {β : Type u_3} [DecidableEq α] [Neg α] [SemilatticeInf β] [OrderTop β] (s : Finset α) (f : αβ) :
                  (-s).inf f = s.inf fun (x : α) => f (-x)
                  @[simp]
                  theorem Finset.inf'_inv {α : Type u_2} {β : Type u_3} [DecidableEq α] [Inv α] [SemilatticeInf β] {s : Finset α} (hs : s⁻¹.Nonempty) (f : αβ) :
                  s⁻¹.inf' hs f = s.inf' fun (x : α) => f x⁻¹
                  @[simp]
                  theorem Finset.inf'_neg {α : Type u_2} {β : Type u_3} [DecidableEq α] [Neg α] [SemilatticeInf β] {s : Finset α} (hs : (-s).Nonempty) (f : αβ) :
                  (-s).inf' hs f = s.inf' fun (x : α) => f (-x)
                  theorem Finset.image_op_inv {α : Type u_2} [DecidableEq α] [Inv α] (s : Finset α) :
                  Finset.image MulOpposite.op s⁻¹ = (Finset.image MulOpposite.op s)⁻¹
                  theorem Finset.image_op_neg {α : Type u_2} [DecidableEq α] [Neg α] (s : Finset α) :
                  Finset.image AddOpposite.op (-s) = -Finset.image AddOpposite.op s
                  theorem Finset.map_op_inv {α : Type u_2} [DecidableEq α] [Inv α] (s : Finset α) :
                  Finset.map MulOpposite.opEquiv.toEmbedding s⁻¹ = (Finset.map MulOpposite.opEquiv.toEmbedding s)⁻¹
                  theorem Finset.map_op_neg {α : Type u_2} [DecidableEq α] [Neg α] (s : Finset α) :
                  Finset.map AddOpposite.opEquiv.toEmbedding (-s) = -Finset.map AddOpposite.opEquiv.toEmbedding s
                  @[simp]
                  theorem Finset.mem_inv' {α : Type u_2} [DecidableEq α] [InvolutiveInv α] {s : Finset α} {a : α} :
                  @[simp]
                  theorem Finset.mem_neg' {α : Type u_2} [DecidableEq α] [InvolutiveNeg α] {s : Finset α} {a : α} :
                  a -s -a s
                  @[simp]
                  theorem Finset.coe_inv {α : Type u_2} [DecidableEq α] [InvolutiveInv α] (s : Finset α) :
                  s⁻¹ = (↑s)⁻¹
                  @[simp]
                  theorem Finset.coe_neg {α : Type u_2} [DecidableEq α] [InvolutiveNeg α] (s : Finset α) :
                  (-s) = -s
                  @[simp]
                  theorem Finset.card_inv {α : Type u_2} [DecidableEq α] [InvolutiveInv α] (s : Finset α) :
                  s⁻¹.card = s.card
                  @[simp]
                  theorem Finset.card_neg {α : Type u_2} [DecidableEq α] [InvolutiveNeg α] (s : Finset α) :
                  (-s).card = s.card
                  @[simp]
                  theorem Finset.dens_inv {α : Type u_2} [DecidableEq α] [InvolutiveInv α] [Fintype α] (s : Finset α) :
                  s⁻¹.dens = s.dens
                  @[simp]
                  theorem Finset.dens_neg {α : Type u_2} [DecidableEq α] [InvolutiveNeg α] [Fintype α] (s : Finset α) :
                  (-s).dens = s.dens
                  @[simp]
                  theorem Finset.preimage_inv {α : Type u_2} [DecidableEq α] [InvolutiveInv α] (s : Finset α) :
                  s.preimage (fun (x : α) => x⁻¹) = s⁻¹
                  @[simp]
                  theorem Finset.preimage_neg {α : Type u_2} [DecidableEq α] [InvolutiveNeg α] (s : Finset α) :
                  s.preimage (fun (x : α) => -x) = -s
                  @[simp]
                  theorem Finset.inv_univ {α : Type u_2} [DecidableEq α] [InvolutiveInv α] [Fintype α] :
                  Finset.univ⁻¹ = Finset.univ
                  @[simp]
                  theorem Finset.neg_univ {α : Type u_2} [DecidableEq α] [InvolutiveNeg α] [Fintype α] :
                  -Finset.univ = Finset.univ
                  @[simp]
                  theorem Finset.inv_inter {α : Type u_2} [DecidableEq α] [InvolutiveInv α] (s t : Finset α) :
                  @[simp]
                  theorem Finset.neg_inter {α : Type u_2} [DecidableEq α] [InvolutiveNeg α] (s t : Finset α) :
                  -(s t) = -s -t

                  Scalar addition/multiplication of finsets #

                  def Finset.smul {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] :
                  SMul (Finset α) (Finset β)

                  The pointwise product of two finsets s and t: s • t = {x • y | x ∈ s, y ∈ t}.

                  Equations
                  Instances For
                    def Finset.vadd {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] :
                    VAdd (Finset α) (Finset β)

                    The pointwise sum of two finsets s and t: s +ᵥ t = {x +ᵥ y | x ∈ s, y ∈ t}.

                    Equations
                    Instances For
                      theorem Finset.smul_def {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s : Finset α} {t : Finset β} :
                      s t = Finset.image (fun (p : α × β) => p.1 p.2) (s ×ˢ t)
                      theorem Finset.vadd_def {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s : Finset α} {t : Finset β} :
                      s +ᵥ t = Finset.image (fun (p : α × β) => p.1 +ᵥ p.2) (s ×ˢ t)
                      theorem Finset.image_smul_product {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s : Finset α} {t : Finset β} :
                      Finset.image (fun (x : α × β) => x.1 x.2) (s ×ˢ t) = s t
                      theorem Finset.image_vadd_product {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s : Finset α} {t : Finset β} :
                      Finset.image (fun (x : α × β) => x.1 +ᵥ x.2) (s ×ˢ t) = s +ᵥ t
                      theorem Finset.mem_smul {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s : Finset α} {t : Finset β} {x : β} :
                      x s t ys, zt, y z = x
                      theorem Finset.mem_vadd {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s : Finset α} {t : Finset β} {x : β} :
                      x s +ᵥ t ys, zt, y +ᵥ z = x
                      @[simp]
                      theorem Finset.coe_smul {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] (s : Finset α) (t : Finset β) :
                      (s t) = s t
                      @[simp]
                      theorem Finset.coe_vadd {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] (s : Finset α) (t : Finset β) :
                      (s +ᵥ t) = s +ᵥ t
                      theorem Finset.smul_mem_smul {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s : Finset α} {t : Finset β} {a : α} {b : β} :
                      a sb ta b s t
                      theorem Finset.vadd_mem_vadd {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s : Finset α} {t : Finset β} {a : α} {b : β} :
                      a sb ta +ᵥ b s +ᵥ t
                      theorem Finset.smul_card_le {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s : Finset α} {t : Finset β} :
                      (s t).card s.card t.card
                      theorem Finset.vadd_card_le {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s : Finset α} {t : Finset β} :
                      (s +ᵥ t).card s.card t.card
                      @[simp]
                      theorem Finset.empty_smul {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] (t : Finset β) :
                      @[simp]
                      theorem Finset.empty_vadd {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] (t : Finset β) :
                      @[simp]
                      theorem Finset.smul_empty {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] (s : Finset α) :
                      @[simp]
                      theorem Finset.vadd_empty {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] (s : Finset α) :
                      @[simp]
                      theorem Finset.smul_eq_empty {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s : Finset α} {t : Finset β} :
                      s t = s = t =
                      @[simp]
                      theorem Finset.vadd_eq_empty {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s : Finset α} {t : Finset β} :
                      s +ᵥ t = s = t =
                      @[simp]
                      theorem Finset.smul_nonempty_iff {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s : Finset α} {t : Finset β} :
                      (s t).Nonempty s.Nonempty t.Nonempty
                      @[simp]
                      theorem Finset.vadd_nonempty_iff {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s : Finset α} {t : Finset β} :
                      (s +ᵥ t).Nonempty s.Nonempty t.Nonempty
                      theorem Finset.Nonempty.smul {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s : Finset α} {t : Finset β} :
                      s.Nonemptyt.Nonempty(s t).Nonempty
                      theorem Finset.Nonempty.vadd {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s : Finset α} {t : Finset β} :
                      s.Nonemptyt.Nonempty(s +ᵥ t).Nonempty
                      theorem Finset.Nonempty.of_smul_left {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s : Finset α} {t : Finset β} :
                      (s t).Nonemptys.Nonempty
                      theorem Finset.Nonempty.of_vadd_left {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s : Finset α} {t : Finset β} :
                      (s +ᵥ t).Nonemptys.Nonempty
                      theorem Finset.Nonempty.of_smul_right {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s : Finset α} {t : Finset β} :
                      (s t).Nonemptyt.Nonempty
                      theorem Finset.Nonempty.of_vadd_right {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s : Finset α} {t : Finset β} :
                      (s +ᵥ t).Nonemptyt.Nonempty
                      theorem Finset.smul_singleton {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s : Finset α} (b : β) :
                      s {b} = Finset.image (fun (x : α) => x b) s
                      theorem Finset.vadd_singleton {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s : Finset α} (b : β) :
                      s +ᵥ {b} = Finset.image (fun (x : α) => x +ᵥ b) s
                      theorem Finset.singleton_smul_singleton {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] (a : α) (b : β) :
                      {a} {b} = {a b}
                      theorem Finset.singleton_vadd_singleton {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] (a : α) (b : β) :
                      {a} +ᵥ {b} = {a +ᵥ b}
                      theorem Finset.smul_subset_smul {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s₁ s₂ : Finset α} {t₁ t₂ : Finset β} :
                      s₁ s₂t₁ t₂s₁ t₁ s₂ t₂
                      theorem Finset.vadd_subset_vadd {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s₁ s₂ : Finset α} {t₁ t₂ : Finset β} :
                      s₁ s₂t₁ t₂s₁ +ᵥ t₁ s₂ +ᵥ t₂
                      theorem Finset.smul_subset_smul_left {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s : Finset α} {t₁ t₂ : Finset β} :
                      t₁ t₂s t₁ s t₂
                      theorem Finset.vadd_subset_vadd_left {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s : Finset α} {t₁ t₂ : Finset β} :
                      t₁ t₂s +ᵥ t₁ s +ᵥ t₂
                      theorem Finset.smul_subset_smul_right {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s₁ s₂ : Finset α} {t : Finset β} :
                      s₁ s₂s₁ t s₂ t
                      theorem Finset.vadd_subset_vadd_right {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s₁ s₂ : Finset α} {t : Finset β} :
                      s₁ s₂s₁ +ᵥ t s₂ +ᵥ t
                      theorem Finset.smul_subset_iff {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s : Finset α} {t u : Finset β} :
                      s t u as, bt, a b u
                      theorem Finset.vadd_subset_iff {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s : Finset α} {t u : Finset β} :
                      s +ᵥ t u as, bt, a +ᵥ b u
                      theorem Finset.union_smul {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s₁ s₂ : Finset α} {t : Finset β} [DecidableEq α] :
                      (s₁ s₂) t = s₁ t s₂ t
                      theorem Finset.union_vadd {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s₁ s₂ : Finset α} {t : Finset β} [DecidableEq α] :
                      s₁ s₂ +ᵥ t = s₁ +ᵥ t (s₂ +ᵥ t)
                      theorem Finset.smul_union {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s : Finset α} {t₁ t₂ : Finset β} :
                      s (t₁ t₂) = s t₁ s t₂
                      theorem Finset.vadd_union {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s : Finset α} {t₁ t₂ : Finset β} :
                      s +ᵥ (t₁ t₂) = s +ᵥ t₁ (s +ᵥ t₂)
                      theorem Finset.inter_smul_subset {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s₁ s₂ : Finset α} {t : Finset β} [DecidableEq α] :
                      (s₁ s₂) t s₁ t s₂ t
                      theorem Finset.inter_vadd_subset {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s₁ s₂ : Finset α} {t : Finset β} [DecidableEq α] :
                      s₁ s₂ +ᵥ t (s₁ +ᵥ t) (s₂ +ᵥ t)
                      theorem Finset.smul_inter_subset {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s : Finset α} {t₁ t₂ : Finset β} :
                      s (t₁ t₂) s t₁ s t₂
                      theorem Finset.vadd_inter_subset {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s : Finset α} {t₁ t₂ : Finset β} :
                      s +ᵥ t₁ t₂ (s +ᵥ t₁) (s +ᵥ t₂)
                      theorem Finset.inter_smul_union_subset_union {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s₁ s₂ : Finset α} {t₁ t₂ : Finset β} [DecidableEq α] :
                      (s₁ s₂) (t₁ t₂) s₁ t₁ s₂ t₂
                      theorem Finset.inter_vadd_union_subset_union {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s₁ s₂ : Finset α} {t₁ t₂ : Finset β} [DecidableEq α] :
                      s₁ s₂ +ᵥ (t₁ t₂) s₁ +ᵥ t₁ (s₂ +ᵥ t₂)
                      theorem Finset.union_smul_inter_subset_union {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s₁ s₂ : Finset α} {t₁ t₂ : Finset β} [DecidableEq α] :
                      (s₁ s₂) (t₁ t₂) s₁ t₁ s₂ t₂
                      theorem Finset.union_vadd_inter_subset_union {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s₁ s₂ : Finset α} {t₁ t₂ : Finset β} [DecidableEq α] :
                      s₁ s₂ +ᵥ t₁ t₂ s₁ +ᵥ t₁ (s₂ +ᵥ t₂)
                      theorem Finset.subset_smul {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {u : Finset β} {s : Set α} {t : Set β} :
                      u s t∃ (s' : Finset α) (t' : Finset β), s' s t' t u s' t'

                      If a finset u is contained in the scalar product of two sets s • t, we can find two finsets s', t' such that s' ⊆ s, t' ⊆ t and u ⊆ s' • t'.

                      theorem Finset.subset_vadd {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {u : Finset β} {s : Set α} {t : Set β} :
                      u s +ᵥ t∃ (s' : Finset α) (t' : Finset β), s' s t' t u s' +ᵥ t'

                      If a finset u is contained in the scalar sum of two sets s +ᵥ t, we can find two finsets s', t' such that s' ⊆ s, t' ⊆ t and u ⊆ s' +ᵥ t'.

                      Translation/scaling of finsets #

                      def Finset.smulFinset {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] :
                      SMul α (Finset β)

                      The scaling of a finset s by a scalar a: a • s = {a • x | x ∈ s}.

                      Equations
                      • Finset.smulFinset = { smul := fun (a : α) => Finset.image fun (x : β) => a x }
                      Instances For
                        def Finset.vaddFinset {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] :
                        VAdd α (Finset β)

                        The translation of a finset s by a vector a: a +ᵥ s = {a +ᵥ x | x ∈ s}.

                        Equations
                        • Finset.vaddFinset = { vadd := fun (a : α) => Finset.image fun (x : β) => a +ᵥ x }
                        Instances For
                          theorem Finset.smul_finset_def {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s : Finset β} {a : α} :
                          a s = Finset.image (fun (x : β) => a x) s
                          theorem Finset.vadd_finset_def {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s : Finset β} {a : α} :
                          a +ᵥ s = Finset.image (fun (x : β) => a +ᵥ x) s
                          theorem Finset.image_smul {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s : Finset β} {a : α} :
                          Finset.image (fun (x : β) => a x) s = a s
                          theorem Finset.image_vadd {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s : Finset β} {a : α} :
                          Finset.image (fun (x : β) => a +ᵥ x) s = a +ᵥ s
                          theorem Finset.mem_smul_finset {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s : Finset β} {a : α} {x : β} :
                          x a s ys, a y = x
                          theorem Finset.mem_vadd_finset {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s : Finset β} {a : α} {x : β} :
                          x a +ᵥ s ys, a +ᵥ y = x
                          @[simp]
                          theorem Finset.coe_smul_finset {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] (a : α) (s : Finset β) :
                          (a s) = a s
                          @[simp]
                          theorem Finset.coe_vadd_finset {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] (a : α) (s : Finset β) :
                          (a +ᵥ s) = a +ᵥ s
                          theorem Finset.smul_mem_smul_finset {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s : Finset β} {a : α} {b : β} :
                          b sa b a s
                          theorem Finset.vadd_mem_vadd_finset {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s : Finset β} {a : α} {b : β} :
                          b sa +ᵥ b a +ᵥ s
                          theorem Finset.smul_finset_card_le {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s : Finset β} {a : α} :
                          (a s).card s.card
                          theorem Finset.vadd_finset_card_le {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s : Finset β} {a : α} :
                          (a +ᵥ s).card s.card
                          @[simp]
                          theorem Finset.smul_finset_empty {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] (a : α) :
                          @[simp]
                          theorem Finset.vadd_finset_empty {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] (a : α) :
                          @[simp]
                          theorem Finset.smul_finset_eq_empty {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s : Finset β} {a : α} :
                          a s = s =
                          @[simp]
                          theorem Finset.vadd_finset_eq_empty {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s : Finset β} {a : α} :
                          a +ᵥ s = s =
                          @[simp]
                          theorem Finset.smul_finset_nonempty {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s : Finset β} {a : α} :
                          (a s).Nonempty s.Nonempty
                          @[simp]
                          theorem Finset.vadd_finset_nonempty {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s : Finset β} {a : α} :
                          (a +ᵥ s).Nonempty s.Nonempty
                          theorem Finset.Nonempty.smul_finset {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s : Finset β} {a : α} (hs : s.Nonempty) :
                          (a s).Nonempty
                          theorem Finset.Nonempty.vadd_finset {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s : Finset β} {a : α} (hs : s.Nonempty) :
                          (a +ᵥ s).Nonempty
                          @[simp]
                          theorem Finset.singleton_smul {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {t : Finset β} (a : α) :
                          {a} t = a t
                          @[simp]
                          theorem Finset.singleton_vadd {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {t : Finset β} (a : α) :
                          {a} +ᵥ t = a +ᵥ t
                          theorem Finset.smul_finset_subset_smul_finset {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s t : Finset β} {a : α} :
                          s ta s a t
                          theorem Finset.vadd_finset_subset_vadd_finset {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s t : Finset β} {a : α} :
                          s ta +ᵥ s a +ᵥ t
                          @[simp]
                          theorem Finset.smul_finset_singleton {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {a : α} (b : β) :
                          a {b} = {a b}
                          @[simp]
                          theorem Finset.vadd_finset_singleton {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {a : α} (b : β) :
                          a +ᵥ {b} = {a +ᵥ b}
                          theorem Finset.smul_finset_union {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s₁ s₂ : Finset β} {a : α} :
                          a (s₁ s₂) = a s₁ a s₂
                          theorem Finset.vadd_finset_union {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s₁ s₂ : Finset β} {a : α} :
                          a +ᵥ (s₁ s₂) = a +ᵥ s₁ (a +ᵥ s₂)
                          theorem Finset.smul_finset_insert {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] (a : α) (b : β) (s : Finset β) :
                          a insert b s = insert (a b) (a s)
                          theorem Finset.vadd_finset_insert {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] (a : α) (b : β) (s : Finset β) :
                          a +ᵥ insert b s = insert (a +ᵥ b) (a +ᵥ s)
                          theorem Finset.smul_finset_inter_subset {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {s₁ s₂ : Finset β} {a : α} :
                          a (s₁ s₂) a s₁ a s₂
                          theorem Finset.vadd_finset_inter_subset {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {s₁ s₂ : Finset β} {a : α} :
                          a +ᵥ s₁ s₂ (a +ᵥ s₁) (a +ᵥ s₂)
                          theorem Finset.smul_finset_subset_smul {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {t : Finset β} {a : α} {s : Finset α} :
                          a sa t s t
                          theorem Finset.vadd_finset_subset_vadd {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {t : Finset β} {a : α} {s : Finset α} :
                          a sa +ᵥ t s +ᵥ t
                          @[simp]
                          theorem Finset.biUnion_smul_finset {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] (s : Finset α) (t : Finset β) :
                          (s.biUnion fun (x : α) => x t) = s t
                          @[simp]
                          theorem Finset.biUnion_vadd_finset {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] (s : Finset α) (t : Finset β) :
                          (s.biUnion fun (x : α) => x +ᵥ t) = s +ᵥ t

                          Finset addition/multiplication #

                          def Finset.mul {α : Type u_2} [DecidableEq α] [Mul α] :
                          Mul (Finset α)

                          The pointwise multiplication of finsets s * t and t is defined as {x * y | x ∈ s, y ∈ t} in locale Pointwise.

                          Equations
                          Instances For
                            def Finset.add {α : Type u_2} [DecidableEq α] [Add α] :
                            Add (Finset α)

                            The pointwise addition of finsets s + t is defined as {x + y | x ∈ s, y ∈ t} in locale Pointwise.

                            Equations
                            Instances For
                              theorem Finset.mul_def {α : Type u_2} [DecidableEq α] [Mul α] {s t : Finset α} :
                              s * t = Finset.image (fun (p : α × α) => p.1 * p.2) (s ×ˢ t)
                              theorem Finset.add_def {α : Type u_2} [DecidableEq α] [Add α] {s t : Finset α} :
                              s + t = Finset.image (fun (p : α × α) => p.1 + p.2) (s ×ˢ t)
                              theorem Finset.image_mul_product {α : Type u_2} [DecidableEq α] [Mul α] {s t : Finset α} :
                              Finset.image (fun (x : α × α) => x.1 * x.2) (s ×ˢ t) = s * t
                              theorem Finset.image_add_product {α : Type u_2} [DecidableEq α] [Add α] {s t : Finset α} :
                              Finset.image (fun (x : α × α) => x.1 + x.2) (s ×ˢ t) = s + t
                              theorem Finset.mem_mul {α : Type u_2} [DecidableEq α] [Mul α] {s t : Finset α} {x : α} :
                              x s * t ys, zt, y * z = x
                              theorem Finset.mem_add {α : Type u_2} [DecidableEq α] [Add α] {s t : Finset α} {x : α} :
                              x s + t ys, zt, y + z = x
                              @[simp]
                              theorem Finset.coe_mul {α : Type u_2} [DecidableEq α] [Mul α] (s t : Finset α) :
                              (s * t) = s * t
                              @[simp]
                              theorem Finset.coe_add {α : Type u_2} [DecidableEq α] [Add α] (s t : Finset α) :
                              (s + t) = s + t
                              theorem Finset.mul_mem_mul {α : Type u_2} [DecidableEq α] [Mul α] {s t : Finset α} {a b : α} :
                              a sb ta * b s * t
                              theorem Finset.add_mem_add {α : Type u_2} [DecidableEq α] [Add α] {s t : Finset α} {a b : α} :
                              a sb ta + b s + t
                              theorem Finset.card_mul_le {α : Type u_2} [DecidableEq α] [Mul α] {s t : Finset α} :
                              (s * t).card s.card * t.card
                              theorem Finset.card_add_le {α : Type u_2} [DecidableEq α] [Add α] {s t : Finset α} :
                              (s + t).card s.card * t.card
                              theorem Finset.card_mul_iff {α : Type u_2} [DecidableEq α] [Mul α] {s t : Finset α} :
                              (s * t).card = s.card * t.card Set.InjOn (fun (p : α × α) => p.1 * p.2) (s ×ˢ t)
                              theorem Finset.card_add_iff {α : Type u_2} [DecidableEq α] [Add α] {s t : Finset α} :
                              (s + t).card = s.card * t.card Set.InjOn (fun (p : α × α) => p.1 + p.2) (s ×ˢ t)
                              @[simp]
                              theorem Finset.empty_mul {α : Type u_2} [DecidableEq α] [Mul α] (s : Finset α) :
                              @[simp]
                              theorem Finset.empty_add {α : Type u_2} [DecidableEq α] [Add α] (s : Finset α) :
                              @[simp]
                              theorem Finset.mul_empty {α : Type u_2} [DecidableEq α] [Mul α] (s : Finset α) :
                              @[simp]
                              theorem Finset.add_empty {α : Type u_2} [DecidableEq α] [Add α] (s : Finset α) :
                              @[simp]
                              theorem Finset.mul_eq_empty {α : Type u_2} [DecidableEq α] [Mul α] {s t : Finset α} :
                              s * t = s = t =
                              @[simp]
                              theorem Finset.add_eq_empty {α : Type u_2} [DecidableEq α] [Add α] {s t : Finset α} :
                              s + t = s = t =
                              @[simp]
                              theorem Finset.mul_nonempty {α : Type u_2} [DecidableEq α] [Mul α] {s t : Finset α} :
                              (s * t).Nonempty s.Nonempty t.Nonempty
                              @[simp]
                              theorem Finset.add_nonempty {α : Type u_2} [DecidableEq α] [Add α] {s t : Finset α} :
                              (s + t).Nonempty s.Nonempty t.Nonempty
                              theorem Finset.Nonempty.mul {α : Type u_2} [DecidableEq α] [Mul α] {s t : Finset α} :
                              s.Nonemptyt.Nonempty(s * t).Nonempty
                              theorem Finset.Nonempty.add {α : Type u_2} [DecidableEq α] [Add α] {s t : Finset α} :
                              s.Nonemptyt.Nonempty(s + t).Nonempty
                              theorem Finset.Nonempty.of_mul_left {α : Type u_2} [DecidableEq α] [Mul α] {s t : Finset α} :
                              (s * t).Nonemptys.Nonempty
                              theorem Finset.Nonempty.of_add_left {α : Type u_2} [DecidableEq α] [Add α] {s t : Finset α} :
                              (s + t).Nonemptys.Nonempty
                              theorem Finset.Nonempty.of_mul_right {α : Type u_2} [DecidableEq α] [Mul α] {s t : Finset α} :
                              (s * t).Nonemptyt.Nonempty
                              theorem Finset.Nonempty.of_add_right {α : Type u_2} [DecidableEq α] [Add α] {s t : Finset α} :
                              (s + t).Nonemptyt.Nonempty
                              theorem Finset.mul_singleton {α : Type u_2} [DecidableEq α] [Mul α] {s : Finset α} (a : α) :
                              s * {a} = MulOpposite.op a s
                              theorem Finset.add_singleton {α : Type u_2} [DecidableEq α] [Add α] {s : Finset α} (a : α) :
                              theorem Finset.singleton_mul {α : Type u_2} [DecidableEq α] [Mul α] {s : Finset α} (a : α) :
                              {a} * s = a s
                              theorem Finset.singleton_add {α : Type u_2} [DecidableEq α] [Add α] {s : Finset α} (a : α) :
                              {a} + s = a +ᵥ s
                              @[simp]
                              theorem Finset.singleton_mul_singleton {α : Type u_2} [DecidableEq α] [Mul α] (a b : α) :
                              {a} * {b} = {a * b}
                              @[simp]
                              theorem Finset.singleton_add_singleton {α : Type u_2} [DecidableEq α] [Add α] (a b : α) :
                              {a} + {b} = {a + b}
                              theorem Finset.mul_subset_mul {α : Type u_2} [DecidableEq α] [Mul α] {s₁ s₂ t₁ t₂ : Finset α} :
                              s₁ s₂t₁ t₂s₁ * t₁ s₂ * t₂
                              theorem Finset.add_subset_add {α : Type u_2} [DecidableEq α] [Add α] {s₁ s₂ t₁ t₂ : Finset α} :
                              s₁ s₂t₁ t₂s₁ + t₁ s₂ + t₂
                              theorem Finset.mul_subset_mul_left {α : Type u_2} [DecidableEq α] [Mul α] {s t₁ t₂ : Finset α} :
                              t₁ t₂s * t₁ s * t₂
                              theorem Finset.add_subset_add_left {α : Type u_2} [DecidableEq α] [Add α] {s t₁ t₂ : Finset α} :
                              t₁ t₂s + t₁ s + t₂
                              theorem Finset.mul_subset_mul_right {α : Type u_2} [DecidableEq α] [Mul α] {s₁ s₂ t : Finset α} :
                              s₁ s₂s₁ * t s₂ * t
                              theorem Finset.add_subset_add_right {α : Type u_2} [DecidableEq α] [Add α] {s₁ s₂ t : Finset α} :
                              s₁ s₂s₁ + t s₂ + t
                              theorem Finset.mul_subset_iff {α : Type u_2} [DecidableEq α] [Mul α] {s t u : Finset α} :
                              s * t u xs, yt, x * y u
                              theorem Finset.add_subset_iff {α : Type u_2} [DecidableEq α] [Add α] {s t u : Finset α} :
                              s + t u xs, yt, x + y u
                              theorem Finset.union_mul {α : Type u_2} [DecidableEq α] [Mul α] {s₁ s₂ t : Finset α} :
                              (s₁ s₂) * t = s₁ * t s₂ * t
                              theorem Finset.union_add {α : Type u_2} [DecidableEq α] [Add α] {s₁ s₂ t : Finset α} :
                              s₁ s₂ + t = s₁ + t (s₂ + t)
                              theorem Finset.mul_union {α : Type u_2} [DecidableEq α] [Mul α] {s t₁ t₂ : Finset α} :
                              s * (t₁ t₂) = s * t₁ s * t₂
                              theorem Finset.add_union {α : Type u_2} [DecidableEq α] [Add α] {s t₁ t₂ : Finset α} :
                              s + (t₁ t₂) = s + t₁ (s + t₂)
                              theorem Finset.inter_mul_subset {α : Type u_2} [DecidableEq α] [Mul α] {s₁ s₂ t : Finset α} :
                              s₁ s₂ * t s₁ * t (s₂ * t)
                              theorem Finset.inter_add_subset {α : Type u_2} [DecidableEq α] [Add α] {s₁ s₂ t : Finset α} :
                              s₁ s₂ + t (s₁ + t) (s₂ + t)
                              theorem Finset.mul_inter_subset {α : Type u_2} [DecidableEq α] [Mul α] {s t₁ t₂ : Finset α} :
                              s * (t₁ t₂) s * t₁ (s * t₂)
                              theorem Finset.add_inter_subset {α : Type u_2} [DecidableEq α] [Add α] {s t₁ t₂ : Finset α} :
                              s + t₁ t₂ (s + t₁) (s + t₂)
                              theorem Finset.inter_mul_union_subset_union {α : Type u_2} [DecidableEq α] [Mul α] {s₁ s₂ t₁ t₂ : Finset α} :
                              s₁ s₂ * (t₁ t₂) s₁ * t₁ s₂ * t₂
                              theorem Finset.inter_add_union_subset_union {α : Type u_2} [DecidableEq α] [Add α] {s₁ s₂ t₁ t₂ : Finset α} :
                              s₁ s₂ + (t₁ t₂) s₁ + t₁ (s₂ + t₂)
                              theorem Finset.union_mul_inter_subset_union {α : Type u_2} [DecidableEq α] [Mul α] {s₁ s₂ t₁ t₂ : Finset α} :
                              (s₁ s₂) * (t₁ t₂) s₁ * t₁ s₂ * t₂
                              theorem Finset.union_add_inter_subset_union {α : Type u_2} [DecidableEq α] [Add α] {s₁ s₂ t₁ t₂ : Finset α} :
                              s₁ s₂ + t₁ t₂ s₁ + t₁ (s₂ + t₂)
                              theorem Finset.subset_mul {α : Type u_2} [DecidableEq α] [Mul α] {u : Finset α} {s t : Set α} :
                              u s * t∃ (s' : Finset α) (t' : Finset α), s' s t' t u s' * t'

                              If a finset u is contained in the product of two sets s * t, we can find two finsets s', t' such that s' ⊆ s, t' ⊆ t and u ⊆ s' * t'.

                              theorem Finset.subset_add {α : Type u_2} [DecidableEq α] [Add α] {u : Finset α} {s t : Set α} :
                              u s + t∃ (s' : Finset α) (t' : Finset α), s' s t' t u s' + t'

                              If a finset u is contained in the sum of two sets s + t, we can find two finsets s', t' such that s' ⊆ s, t' ⊆ t and u ⊆ s' + t'.

                              theorem Finset.image_mul {F : Type u_1} {α : Type u_2} {β : Type u_3} [DecidableEq α] [Mul α] [Mul β] [FunLike F α β] [MulHomClass F α β] (f : F) {s t : Finset α} [DecidableEq β] :
                              Finset.image (⇑f) (s * t) = Finset.image (⇑f) s * Finset.image (⇑f) t
                              theorem Finset.image_add {F : Type u_1} {α : Type u_2} {β : Type u_3} [DecidableEq α] [Add α] [Add β] [FunLike F α β] [AddHomClass F α β] (f : F) {s t : Finset α} [DecidableEq β] :
                              Finset.image (⇑f) (s + t) = Finset.image (⇑f) s + Finset.image (⇑f) t
                              theorem Finset.image_op_mul {α : Type u_2} [DecidableEq α] [Mul α] (s t : Finset α) :
                              Finset.image MulOpposite.op (s * t) = Finset.image MulOpposite.op t * Finset.image MulOpposite.op s
                              theorem Finset.image_op_add {α : Type u_2} [DecidableEq α] [Add α] (s t : Finset α) :
                              Finset.image AddOpposite.op (s + t) = Finset.image AddOpposite.op t + Finset.image AddOpposite.op s
                              theorem Finset.map_op_mul {α : Type u_2} [DecidableEq α] [Mul α] (s t : Finset α) :
                              Finset.map MulOpposite.opEquiv.toEmbedding (s * t) = Finset.map MulOpposite.opEquiv.toEmbedding t * Finset.map MulOpposite.opEquiv.toEmbedding s
                              theorem Finset.map_op_add {α : Type u_2} [DecidableEq α] [Add α] (s t : Finset α) :
                              Finset.map AddOpposite.opEquiv.toEmbedding (s + t) = Finset.map AddOpposite.opEquiv.toEmbedding t + Finset.map AddOpposite.opEquiv.toEmbedding s
                              def Finset.singletonMulHom {α : Type u_2} [DecidableEq α] [Mul α] :

                              The singleton operation as a MulHom.

                              Equations
                              • Finset.singletonMulHom = { toFun := singleton, map_mul' := }
                              Instances For
                                def Finset.singletonAddHom {α : Type u_2} [DecidableEq α] [Add α] :
                                AddHom α (Finset α)

                                The singleton operation as an AddHom.

                                Equations
                                • Finset.singletonAddHom = { toFun := singleton, map_add' := }
                                Instances For
                                  @[simp]
                                  theorem Finset.coe_singletonMulHom {α : Type u_2} [DecidableEq α] [Mul α] :
                                  Finset.singletonMulHom = singleton
                                  @[simp]
                                  theorem Finset.coe_singletonAddHom {α : Type u_2} [DecidableEq α] [Add α] :
                                  Finset.singletonAddHom = singleton
                                  @[simp]
                                  theorem Finset.singletonMulHom_apply {α : Type u_2} [DecidableEq α] [Mul α] (a : α) :
                                  Finset.singletonMulHom a = {a}
                                  @[simp]
                                  theorem Finset.singletonAddHom_apply {α : Type u_2} [DecidableEq α] [Add α] (a : α) :
                                  Finset.singletonAddHom a = {a}
                                  def Finset.imageMulHom {F : Type u_1} {α : Type u_2} {β : Type u_3} [DecidableEq α] [Mul α] [Mul β] [FunLike F α β] [MulHomClass F α β] (f : F) [DecidableEq β] :

                                  Lift a MulHom to Finset via image.

                                  Equations
                                  Instances For
                                    def Finset.imageAddHom {F : Type u_1} {α : Type u_2} {β : Type u_3} [DecidableEq α] [Add α] [Add β] [FunLike F α β] [AddHomClass F α β] (f : F) [DecidableEq β] :
                                    AddHom (Finset α) (Finset β)

                                    Lift an AddHom to Finset via image

                                    Equations
                                    Instances For
                                      @[simp]
                                      theorem Finset.imageAddHom_apply {F : Type u_1} {α : Type u_2} {β : Type u_3} [DecidableEq α] [Add α] [Add β] [FunLike F α β] [AddHomClass F α β] (f : F) [DecidableEq β] (s : Finset α) :
                                      @[simp]
                                      theorem Finset.imageMulHom_apply {F : Type u_1} {α : Type u_2} {β : Type u_3} [DecidableEq α] [Mul α] [Mul β] [FunLike F α β] [MulHomClass F α β] (f : F) [DecidableEq β] (s : Finset α) :
                                      @[simp]
                                      theorem Finset.sup_mul_le {α : Type u_2} [DecidableEq α] [Mul α] {β : Type u_5} [SemilatticeSup β] [OrderBot β] {s t : Finset α} {f : αβ} {a : β} :
                                      (s * t).sup f a xs, yt, f (x * y) a
                                      @[simp]
                                      theorem Finset.sup_add_le {α : Type u_2} [DecidableEq α] [Add α] {β : Type u_5} [SemilatticeSup β] [OrderBot β] {s t : Finset α} {f : αβ} {a : β} :
                                      (s + t).sup f a xs, yt, f (x + y) a
                                      theorem Finset.sup_mul_left {α : Type u_2} [DecidableEq α] [Mul α] {β : Type u_5} [SemilatticeSup β] [OrderBot β] (s t : Finset α) (f : αβ) :
                                      (s * t).sup f = s.sup fun (x : α) => t.sup fun (x_1 : α) => f (x * x_1)
                                      theorem Finset.sup_add_left {α : Type u_2} [DecidableEq α] [Add α] {β : Type u_5} [SemilatticeSup β] [OrderBot β] (s t : Finset α) (f : αβ) :
                                      (s + t).sup f = s.sup fun (x : α) => t.sup fun (x_1 : α) => f (x + x_1)
                                      theorem Finset.sup_mul_right {α : Type u_2} [DecidableEq α] [Mul α] {β : Type u_5} [SemilatticeSup β] [OrderBot β] (s t : Finset α) (f : αβ) :
                                      (s * t).sup f = t.sup fun (y : α) => s.sup fun (x : α) => f (x * y)
                                      theorem Finset.sup_add_right {α : Type u_2} [DecidableEq α] [Add α] {β : Type u_5} [SemilatticeSup β] [OrderBot β] (s t : Finset α) (f : αβ) :
                                      (s + t).sup f = t.sup fun (y : α) => s.sup fun (x : α) => f (x + y)
                                      @[simp]
                                      theorem Finset.le_inf_mul {α : Type u_2} [DecidableEq α] [Mul α] {β : Type u_5} [SemilatticeInf β] [OrderTop β] {s t : Finset α} {f : αβ} {a : β} :
                                      a (s * t).inf f xs, yt, a f (x * y)
                                      @[simp]
                                      theorem Finset.le_inf_add {α : Type u_2} [DecidableEq α] [Add α] {β : Type u_5} [SemilatticeInf β] [OrderTop β] {s t : Finset α} {f : αβ} {a : β} :
                                      a (s + t).inf f xs, yt, a f (x + y)
                                      theorem Finset.inf_mul_left {α : Type u_2} [DecidableEq α] [Mul α] {β : Type u_5} [SemilatticeInf β] [OrderTop β] (s t : Finset α) (f : αβ) :
                                      (s * t).inf f = s.inf fun (x : α) => t.inf fun (x_1 : α) => f (x * x_1)
                                      theorem Finset.inf_add_left {α : Type u_2} [DecidableEq α] [Add α] {β : Type u_5} [SemilatticeInf β] [OrderTop β] (s t : Finset α) (f : αβ) :
                                      (s + t).inf f = s.inf fun (x : α) => t.inf fun (x_1 : α) => f (x + x_1)
                                      theorem Finset.inf_mul_right {α : Type u_2} [DecidableEq α] [Mul α] {β : Type u_5} [SemilatticeInf β] [OrderTop β] (s t : Finset α) (f : αβ) :
                                      (s * t).inf f = t.inf fun (y : α) => s.inf fun (x : α) => f (x * y)
                                      theorem Finset.inf_add_right {α : Type u_2} [DecidableEq α] [Add α] {β : Type u_5} [SemilatticeInf β] [OrderTop β] (s t : Finset α) (f : αβ) :
                                      (s + t).inf f = t.inf fun (y : α) => s.inf fun (x : α) => f (x + y)

                                      Finset subtraction/division #

                                      def Finset.div {α : Type u_2} [DecidableEq α] [Div α] :
                                      Div (Finset α)

                                      The pointwise division of finsets s / t is defined as {x / y | x ∈ s, y ∈ t} in locale Pointwise.

                                      Equations
                                      Instances For
                                        def Finset.sub {α : Type u_2} [DecidableEq α] [Sub α] :
                                        Sub (Finset α)

                                        The pointwise subtraction of finsets s - t is defined as {x - y | x ∈ s, y ∈ t} in locale Pointwise.

                                        Equations
                                        Instances For
                                          theorem Finset.div_def {α : Type u_2} [DecidableEq α] [Div α] {s t : Finset α} :
                                          s / t = Finset.image (fun (p : α × α) => p.1 / p.2) (s ×ˢ t)
                                          theorem Finset.sub_def {α : Type u_2} [DecidableEq α] [Sub α] {s t : Finset α} :
                                          s - t = Finset.image (fun (p : α × α) => p.1 - p.2) (s ×ˢ t)
                                          theorem Finset.image_div_product {α : Type u_2} [DecidableEq α] [Div α] {s t : Finset α} :
                                          Finset.image (fun (x : α × α) => x.1 / x.2) (s ×ˢ t) = s / t
                                          theorem Finset.image_sub_product {α : Type u_2} [DecidableEq α] [Sub α] {s t : Finset α} :
                                          Finset.image (fun (x : α × α) => x.1 - x.2) (s ×ˢ t) = s - t
                                          theorem Finset.mem_div {α : Type u_2} [DecidableEq α] [Div α] {s t : Finset α} {a : α} :
                                          a s / t bs, ct, b / c = a
                                          theorem Finset.mem_sub {α : Type u_2} [DecidableEq α] [Sub α] {s t : Finset α} {a : α} :
                                          a s - t bs, ct, b - c = a
                                          @[simp]
                                          theorem Finset.coe_div {α : Type u_2} [DecidableEq α] [Div α] (s t : Finset α) :
                                          (s / t) = s / t
                                          @[simp]
                                          theorem Finset.coe_sub {α : Type u_2} [DecidableEq α] [Sub α] (s t : Finset α) :
                                          (s - t) = s - t
                                          theorem Finset.div_mem_div {α : Type u_2} [DecidableEq α] [Div α] {s t : Finset α} {a b : α} :
                                          a sb ta / b s / t
                                          theorem Finset.sub_mem_sub {α : Type u_2} [DecidableEq α] [Sub α] {s t : Finset α} {a b : α} :
                                          a sb ta - b s - t
                                          theorem Finset.div_card_le {α : Type u_2} [DecidableEq α] [Div α] {s t : Finset α} :
                                          (s / t).card s.card * t.card
                                          theorem Finset.sub_card_le {α : Type u_2} [DecidableEq α] [Sub α] {s t : Finset α} :
                                          (s - t).card s.card * t.card
                                          @[simp]
                                          theorem Finset.empty_div {α : Type u_2} [DecidableEq α] [Div α] (s : Finset α) :
                                          @[simp]
                                          theorem Finset.empty_sub {α : Type u_2} [DecidableEq α] [Sub α] (s : Finset α) :
                                          @[simp]
                                          theorem Finset.div_empty {α : Type u_2} [DecidableEq α] [Div α] (s : Finset α) :
                                          @[simp]
                                          theorem Finset.sub_empty {α : Type u_2} [DecidableEq α] [Sub α] (s : Finset α) :
                                          @[simp]
                                          theorem Finset.div_eq_empty {α : Type u_2} [DecidableEq α] [Div α] {s t : Finset α} :
                                          s / t = s = t =
                                          @[simp]
                                          theorem Finset.sub_eq_empty {α : Type u_2} [DecidableEq α] [Sub α] {s t : Finset α} :
                                          s - t = s = t =
                                          @[simp]
                                          theorem Finset.div_nonempty {α : Type u_2} [DecidableEq α] [Div α] {s t : Finset α} :
                                          (s / t).Nonempty s.Nonempty t.Nonempty
                                          @[simp]
                                          theorem Finset.sub_nonempty {α : Type u_2} [DecidableEq α] [Sub α] {s t : Finset α} :
                                          (s - t).Nonempty s.Nonempty t.Nonempty
                                          theorem Finset.Nonempty.div {α : Type u_2} [DecidableEq α] [Div α] {s t : Finset α} :
                                          s.Nonemptyt.Nonempty(s / t).Nonempty
                                          theorem Finset.Nonempty.sub {α : Type u_2} [DecidableEq α] [Sub α] {s t : Finset α} :
                                          s.Nonemptyt.Nonempty(s - t).Nonempty
                                          theorem Finset.Nonempty.of_div_left {α : Type u_2} [DecidableEq α] [Div α] {s t : Finset α} :
                                          (s / t).Nonemptys.Nonempty
                                          theorem Finset.Nonempty.of_sub_left {α : Type u_2} [DecidableEq α] [Sub α] {s t : Finset α} :
                                          (s - t).Nonemptys.Nonempty
                                          theorem Finset.Nonempty.of_div_right {α : Type u_2} [DecidableEq α] [Div α] {s t : Finset α} :
                                          (s / t).Nonemptyt.Nonempty
                                          theorem Finset.Nonempty.of_sub_right {α : Type u_2} [DecidableEq α] [Sub α] {s t : Finset α} :
                                          (s - t).Nonemptyt.Nonempty
                                          @[simp]
                                          theorem Finset.div_singleton {α : Type u_2} [DecidableEq α] [Div α] {s : Finset α} (a : α) :
                                          s / {a} = Finset.image (fun (x : α) => x / a) s
                                          @[simp]
                                          theorem Finset.sub_singleton {α : Type u_2} [DecidableEq α] [Sub α] {s : Finset α} (a : α) :
                                          s - {a} = Finset.image (fun (x : α) => x - a) s
                                          @[simp]
                                          theorem Finset.singleton_div {α : Type u_2} [DecidableEq α] [Div α] {s : Finset α} (a : α) :
                                          {a} / s = Finset.image (fun (x : α) => a / x) s
                                          @[simp]
                                          theorem Finset.singleton_sub {α : Type u_2} [DecidableEq α] [Sub α] {s : Finset α} (a : α) :
                                          {a} - s = Finset.image (fun (x : α) => a - x) s
                                          theorem Finset.singleton_div_singleton {α : Type u_2} [DecidableEq α] [Div α] (a b : α) :
                                          {a} / {b} = {a / b}
                                          theorem Finset.singleton_sub_singleton {α : Type u_2} [DecidableEq α] [Sub α] (a b : α) :
                                          {a} - {b} = {a - b}
                                          theorem Finset.div_subset_div {α : Type u_2} [DecidableEq α] [Div α] {s₁ s₂ t₁ t₂ : Finset α} :
                                          s₁ s₂t₁ t₂s₁ / t₁ s₂ / t₂
                                          theorem Finset.sub_subset_sub {α : Type u_2} [DecidableEq α] [Sub α] {s₁ s₂ t₁ t₂ : Finset α} :
                                          s₁ s₂t₁ t₂s₁ - t₁ s₂ - t₂
                                          theorem Finset.div_subset_div_left {α : Type u_2} [DecidableEq α] [Div α] {s t₁ t₂ : Finset α} :
                                          t₁ t₂s / t₁ s / t₂
                                          theorem Finset.sub_subset_sub_left {α : Type u_2} [DecidableEq α] [Sub α] {s t₁ t₂ : Finset α} :
                                          t₁ t₂s - t₁ s - t₂
                                          theorem Finset.div_subset_div_right {α : Type u_2} [DecidableEq α] [Div α] {s₁ s₂ t : Finset α} :
                                          s₁ s₂s₁ / t s₂ / t
                                          theorem Finset.sub_subset_sub_right {α : Type u_2} [DecidableEq α] [Sub α] {s₁ s₂ t : Finset α} :
                                          s₁ s₂s₁ - t s₂ - t
                                          theorem Finset.div_subset_iff {α : Type u_2} [DecidableEq α] [Div α] {s t u : Finset α} :
                                          s / t u xs, yt, x / y u
                                          theorem Finset.sub_subset_iff {α : Type u_2} [DecidableEq α] [Sub α] {s t u : Finset α} :
                                          s - t u xs, yt, x - y u
                                          theorem Finset.union_div {α : Type u_2} [DecidableEq α] [Div α] {s₁ s₂ t : Finset α} :
                                          (s₁ s₂) / t = s₁ / t s₂ / t
                                          theorem Finset.union_sub {α : Type u_2} [DecidableEq α] [Sub α] {s₁ s₂ t : Finset α} :
                                          s₁ s₂ - t = s₁ - t (s₂ - t)
                                          theorem Finset.div_union {α : Type u_2} [DecidableEq α] [Div α] {s t₁ t₂ : Finset α} :
                                          s / (t₁ t₂) = s / t₁ s / t₂
                                          theorem Finset.sub_union {α : Type u_2} [DecidableEq α] [Sub α] {s t₁ t₂ : Finset α} :
                                          s - (t₁ t₂) = s - t₁ (s - t₂)
                                          theorem Finset.inter_div_subset {α : Type u_2} [DecidableEq α] [Div α] {s₁ s₂ t : Finset α} :
                                          s₁ s₂ / t s₁ / t (s₂ / t)
                                          theorem Finset.inter_sub_subset {α : Type u_2} [DecidableEq α] [Sub α] {s₁ s₂ t : Finset α} :
                                          s₁ s₂ - t (s₁ - t) (s₂ - t)
                                          theorem Finset.div_inter_subset {α : Type u_2} [DecidableEq α] [Div α] {s t₁ t₂ : Finset α} :
                                          s / (t₁ t₂) s / t₁ (s / t₂)
                                          theorem Finset.sub_inter_subset {α : Type u_2} [DecidableEq α] [Sub α] {s t₁ t₂ : Finset α} :
                                          s - t₁ t₂ (s - t₁) (s - t₂)
                                          theorem Finset.inter_div_union_subset_union {α : Type u_2} [DecidableEq α] [Div α] {s₁ s₂ t₁ t₂ : Finset α} :
                                          s₁ s₂ / (t₁ t₂) s₁ / t₁ s₂ / t₂
                                          theorem Finset.inter_sub_union_subset_union {α : Type u_2} [DecidableEq α] [Sub α] {s₁ s₂ t₁ t₂ : Finset α} :
                                          s₁ s₂ - (t₁ t₂) s₁ - t₁ (s₂ - t₂)
                                          theorem Finset.union_div_inter_subset_union {α : Type u_2} [DecidableEq α] [Div α] {s₁ s₂ t₁ t₂ : Finset α} :
                                          (s₁ s₂) / (t₁ t₂) s₁ / t₁ s₂ / t₂
                                          theorem Finset.union_sub_inter_subset_union {α : Type u_2} [DecidableEq α] [Sub α] {s₁ s₂ t₁ t₂ : Finset α} :
                                          s₁ s₂ - t₁ t₂ s₁ - t₁ (s₂ - t₂)
                                          theorem Finset.subset_div {α : Type u_2} [DecidableEq α] [Div α] {u : Finset α} {s t : Set α} :
                                          u s / t∃ (s' : Finset α) (t' : Finset α), s' s t' t u s' / t'

                                          If a finset u is contained in the product of two sets s / t, we can find two finsets s', t' such that s' ⊆ s, t' ⊆ t and u ⊆ s' / t'.

                                          theorem Finset.subset_sub {α : Type u_2} [DecidableEq α] [Sub α] {u : Finset α} {s t : Set α} :
                                          u s - t∃ (s' : Finset α) (t' : Finset α), s' s t' t u s' - t'

                                          If a finset u is contained in the sum of two sets s - t, we can find two finsets s', t' such that s' ⊆ s, t' ⊆ t and u ⊆ s' - t'.

                                          @[simp]
                                          theorem Finset.sup_div_le {α : Type u_2} {β : Type u_3} [DecidableEq α] [Div α] [SemilatticeSup β] [OrderBot β] {s t : Finset α} {f : αβ} {a : β} :
                                          (s / t).sup f a xs, yt, f (x / y) a
                                          @[simp]
                                          theorem Finset.sup_sub_le {α : Type u_2} {β : Type u_3} [DecidableEq α] [Sub α] [SemilatticeSup β] [OrderBot β] {s t : Finset α} {f : αβ} {a : β} :
                                          (s - t).sup f a xs, yt, f (x - y) a
                                          theorem Finset.sup_div_left {α : Type u_2} {β : Type u_3} [DecidableEq α] [Div α] [SemilatticeSup β] [OrderBot β] (s t : Finset α) (f : αβ) :
                                          (s / t).sup f = s.sup fun (x : α) => t.sup fun (x_1 : α) => f (x / x_1)
                                          theorem Finset.sup_sub_left {α : Type u_2} {β : Type u_3} [DecidableEq α] [Sub α] [SemilatticeSup β] [OrderBot β] (s t : Finset α) (f : αβ) :
                                          (s - t).sup f = s.sup fun (x : α) => t.sup fun (x_1 : α) => f (x - x_1)
                                          theorem Finset.sup_div_right {α : Type u_2} {β : Type u_3} [DecidableEq α] [Div α] [SemilatticeSup β] [OrderBot β] (s t : Finset α) (f : αβ) :
                                          (s / t).sup f = t.sup fun (y : α) => s.sup fun (x : α) => f (x / y)
                                          theorem Finset.sup_sub_right {α : Type u_2} {β : Type u_3} [DecidableEq α] [Sub α] [SemilatticeSup β] [OrderBot β] (s t : Finset α) (f : αβ) :
                                          (s - t).sup f = t.sup fun (y : α) => s.sup fun (x : α) => f (x - y)
                                          @[simp]
                                          theorem Finset.le_inf_div {α : Type u_2} {β : Type u_3} [DecidableEq α] [Div α] [SemilatticeInf β] [OrderTop β] {s t : Finset α} {f : αβ} {a : β} :
                                          a (s / t).inf f xs, yt, a f (x / y)
                                          @[simp]
                                          theorem Finset.le_inf_sub {α : Type u_2} {β : Type u_3} [DecidableEq α] [Sub α] [SemilatticeInf β] [OrderTop β] {s t : Finset α} {f : αβ} {a : β} :
                                          a (s - t).inf f xs, yt, a f (x - y)
                                          theorem Finset.inf_div_left {α : Type u_2} {β : Type u_3} [DecidableEq α] [Div α] [SemilatticeInf β] [OrderTop β] (s t : Finset α) (f : αβ) :
                                          (s / t).inf f = s.inf fun (x : α) => t.inf fun (x_1 : α) => f (x / x_1)
                                          theorem Finset.inf_sub_left {α : Type u_2} {β : Type u_3} [DecidableEq α] [Sub α] [SemilatticeInf β] [OrderTop β] (s t : Finset α) (f : αβ) :
                                          (s - t).inf f = s.inf fun (x : α) => t.inf fun (x_1 : α) => f (x - x_1)
                                          theorem Finset.inf_div_right {α : Type u_2} {β : Type u_3} [DecidableEq α] [Div α] [SemilatticeInf β] [OrderTop β] (s t : Finset α) (f : αβ) :
                                          (s / t).inf f = t.inf fun (y : α) => s.inf fun (x : α) => f (x / y)
                                          theorem Finset.inf_sub_right {α : Type u_2} {β : Type u_3} [DecidableEq α] [Sub α] [SemilatticeInf β] [OrderTop β] (s t : Finset α) (f : αβ) :
                                          (s - t).inf f = t.inf fun (y : α) => s.inf fun (x : α) => f (x - y)

                                          Instances #

                                          def Finset.nsmul {α : Type u_2} [DecidableEq α] [Zero α] [Add α] :

                                          Repeated pointwise addition (not the same as pointwise repeated addition!) of a Finset. See note [pointwise nat action].

                                          Equations
                                          • Finset.nsmul = { smul := nsmulRec }
                                          Instances For
                                            def Finset.npow {α : Type u_2} [DecidableEq α] [One α] [Mul α] :

                                            Repeated pointwise multiplication (not the same as pointwise repeated multiplication!) of a Finset. See note [pointwise nat action].

                                            Equations
                                            Instances For
                                              def Finset.zsmul {α : Type u_2} [DecidableEq α] [Zero α] [Add α] [Neg α] :

                                              Repeated pointwise addition/subtraction (not the same as pointwise repeated addition/subtraction!) of a Finset. See note [pointwise nat action].

                                              Equations
                                              • Finset.zsmul = { smul := zsmulRec }
                                              Instances For
                                                def Finset.zpow {α : Type u_2} [DecidableEq α] [One α] [Mul α] [Inv α] :

                                                Repeated pointwise multiplication/division (not the same as pointwise repeated multiplication/division!) of a Finset. See note [pointwise nat action].

                                                Equations
                                                Instances For

                                                  Finset α is a Semigroup under pointwise operations if α is.

                                                  Equations
                                                  Instances For

                                                    Finset α is an AddSemigroup under pointwise operations if α is.

                                                    Equations
                                                    Instances For

                                                      Finset α is a CommSemigroup under pointwise operations if α is.

                                                      Equations
                                                      Instances For

                                                        Finset α is an AddCommSemigroup under pointwise operations if α is.

                                                        Equations
                                                        Instances For
                                                          theorem Finset.inter_mul_union_subset {α : Type u_2} [DecidableEq α] [CommSemigroup α] {s t : Finset α} :
                                                          s t * (s t) s * t
                                                          theorem Finset.inter_add_union_subset {α : Type u_2} [DecidableEq α] [AddCommSemigroup α] {s t : Finset α} :
                                                          s t + (s t) s + t
                                                          theorem Finset.union_mul_inter_subset {α : Type u_2} [DecidableEq α] [CommSemigroup α] {s t : Finset α} :
                                                          (s t) * (s t) s * t
                                                          theorem Finset.union_add_inter_subset {α : Type u_2} [DecidableEq α] [AddCommSemigroup α] {s t : Finset α} :
                                                          s t + s t s + t

                                                          Finset α is a MulOneClass under pointwise operations if α is.

                                                          Equations
                                                          Instances For

                                                            Finset α is an AddZeroClass under pointwise operations if α is.

                                                            Equations
                                                            Instances For
                                                              theorem Finset.subset_mul_left {α : Type u_2} [DecidableEq α] [MulOneClass α] (s : Finset α) {t : Finset α} (ht : 1 t) :
                                                              s s * t
                                                              theorem Finset.subset_add_left {α : Type u_2} [DecidableEq α] [AddZeroClass α] (s : Finset α) {t : Finset α} (ht : 0 t) :
                                                              s s + t
                                                              theorem Finset.subset_mul_right {α : Type u_2} [DecidableEq α] [MulOneClass α] {s : Finset α} (t : Finset α) (hs : 1 s) :
                                                              t s * t
                                                              theorem Finset.subset_add_right {α : Type u_2} [DecidableEq α] [AddZeroClass α] {s : Finset α} (t : Finset α) (hs : 0 s) :
                                                              t s + t

                                                              The singleton operation as a MonoidHom.

                                                              Equations
                                                              • Finset.singletonMonoidHom = { toFun := Finset.singletonMulHom.toFun, map_one' := , map_mul' := }
                                                              Instances For

                                                                The singleton operation as an AddMonoidHom.

                                                                Equations
                                                                • Finset.singletonAddMonoidHom = { toFun := Finset.singletonAddHom.toFun, map_zero' := , map_add' := }
                                                                Instances For
                                                                  @[simp]
                                                                  theorem Finset.coe_singletonMonoidHom {α : Type u_2} [DecidableEq α] [MulOneClass α] :
                                                                  Finset.singletonMonoidHom = singleton
                                                                  @[simp]
                                                                  theorem Finset.coe_singletonAddMonoidHom {α : Type u_2} [DecidableEq α] [AddZeroClass α] :
                                                                  Finset.singletonAddMonoidHom = singleton
                                                                  @[simp]
                                                                  theorem Finset.singletonMonoidHom_apply {α : Type u_2} [DecidableEq α] [MulOneClass α] (a : α) :
                                                                  Finset.singletonMonoidHom a = {a}
                                                                  @[simp]
                                                                  theorem Finset.singletonAddMonoidHom_apply {α : Type u_2} [DecidableEq α] [AddZeroClass α] (a : α) :
                                                                  Finset.singletonAddMonoidHom a = {a}
                                                                  noncomputable def Finset.coeMonoidHom {α : Type u_2} [DecidableEq α] [MulOneClass α] :

                                                                  The coercion from Finset to Set as a MonoidHom.

                                                                  Equations
                                                                  • Finset.coeMonoidHom = { toFun := CoeTC.coe, map_one' := , map_mul' := }
                                                                  Instances For
                                                                    noncomputable def Finset.coeAddMonoidHom {α : Type u_2} [DecidableEq α] [AddZeroClass α] :

                                                                    The coercion from Finset to set as an AddMonoidHom.

                                                                    Equations
                                                                    • Finset.coeAddMonoidHom = { toFun := CoeTC.coe, map_zero' := , map_add' := }
                                                                    Instances For
                                                                      @[simp]
                                                                      theorem Finset.coe_coeMonoidHom {α : Type u_2} [DecidableEq α] [MulOneClass α] :
                                                                      Finset.coeMonoidHom = CoeTC.coe
                                                                      @[simp]
                                                                      theorem Finset.coe_coeAddMonoidHom {α : Type u_2} [DecidableEq α] [AddZeroClass α] :
                                                                      Finset.coeAddMonoidHom = CoeTC.coe
                                                                      @[simp]
                                                                      theorem Finset.coeMonoidHom_apply {α : Type u_2} [DecidableEq α] [MulOneClass α] (s : Finset α) :
                                                                      Finset.coeMonoidHom s = s
                                                                      @[simp]
                                                                      theorem Finset.coeAddMonoidHom_apply {α : Type u_2} [DecidableEq α] [AddZeroClass α] (s : Finset α) :
                                                                      Finset.coeAddMonoidHom s = s
                                                                      def Finset.imageMonoidHom {F : Type u_1} {α : Type u_2} {β : Type u_3} [DecidableEq α] [DecidableEq β] [MulOneClass α] [MulOneClass β] [FunLike F α β] [MonoidHomClass F α β] (f : F) :

                                                                      Lift a MonoidHom to Finset via image.

                                                                      Equations
                                                                      Instances For
                                                                        def Finset.imageAddMonoidHom {F : Type u_1} {α : Type u_2} {β : Type u_3} [DecidableEq α] [DecidableEq β] [AddZeroClass α] [AddZeroClass β] [FunLike F α β] [AddMonoidHomClass F α β] (f : F) :

                                                                        Lift an add_monoid_hom to Finset via image

                                                                        Equations
                                                                        Instances For
                                                                          @[simp]
                                                                          theorem Finset.imageAddMonoidHom_apply {F : Type u_1} {α : Type u_2} {β : Type u_3} [DecidableEq α] [DecidableEq β] [AddZeroClass α] [AddZeroClass β] [FunLike F α β] [AddMonoidHomClass F α β] (f : F) (a✝ : Finset α) :
                                                                          @[simp]
                                                                          theorem Finset.imageMonoidHom_apply {F : Type u_1} {α : Type u_2} {β : Type u_3} [DecidableEq α] [DecidableEq β] [MulOneClass α] [MulOneClass β] [FunLike F α β] [MonoidHomClass F α β] (f : F) (a✝ : Finset α) :
                                                                          @[simp]
                                                                          theorem Finset.coe_pow {α : Type u_2} [DecidableEq α] [Monoid α] (s : Finset α) (n : ) :
                                                                          (s ^ n) = s ^ n
                                                                          @[simp]
                                                                          theorem Finset.coe_nsmul {α : Type u_2} [DecidableEq α] [AddMonoid α] (s : Finset α) (n : ) :
                                                                          (n s) = n s
                                                                          def Finset.monoid {α : Type u_2} [DecidableEq α] [Monoid α] :

                                                                          Finset α is a Monoid under pointwise operations if α is.

                                                                          Equations
                                                                          Instances For

                                                                            Finset α is an AddMonoid under pointwise operations if α is.

                                                                            Equations
                                                                            Instances For
                                                                              theorem Finset.pow_mem_pow {α : Type u_2} [DecidableEq α] [Monoid α] {s : Finset α} {a : α} (ha : a s) (n : ) :
                                                                              a ^ n s ^ n
                                                                              theorem Finset.nsmul_mem_nsmul {α : Type u_2} [DecidableEq α] [AddMonoid α] {s : Finset α} {a : α} (ha : a s) (n : ) :
                                                                              n a n s
                                                                              theorem Finset.pow_subset_pow {α : Type u_2} [DecidableEq α] [Monoid α] {s t : Finset α} (hst : s t) (n : ) :
                                                                              s ^ n t ^ n
                                                                              theorem Finset.nsmul_subset_nsmul {α : Type u_2} [DecidableEq α] [AddMonoid α] {s t : Finset α} (hst : s t) (n : ) :
                                                                              n s n t
                                                                              theorem Finset.pow_subset_pow_of_one_mem {α : Type u_2} [DecidableEq α] [Monoid α] {s : Finset α} {m n : } (hs : 1 s) :
                                                                              m ns ^ m s ^ n
                                                                              theorem Finset.nsmul_subset_nsmul_of_zero_mem {α : Type u_2} [DecidableEq α] [AddMonoid α] {s : Finset α} {m n : } (hs : 0 s) :
                                                                              m nm s n s
                                                                              @[simp]
                                                                              theorem Finset.coe_list_prod {α : Type u_2} [DecidableEq α] [Monoid α] (s : List (Finset α)) :
                                                                              s.prod = (List.map Finset.toSet s).prod
                                                                              @[simp]
                                                                              theorem Finset.coe_list_sum {α : Type u_2} [DecidableEq α] [AddMonoid α] (s : List (Finset α)) :
                                                                              s.sum = (List.map Finset.toSet s).sum
                                                                              theorem Finset.mem_prod_list_ofFn {α : Type u_2} [DecidableEq α] [Monoid α] {n : } {a : α} {s : Fin nFinset α} :
                                                                              a (List.ofFn s).prod ∃ (f : (i : Fin n) → { x : α // x s i }), (List.ofFn fun (i : Fin n) => (f i)).prod = a
                                                                              theorem Finset.mem_sum_list_ofFn {α : Type u_2} [DecidableEq α] [AddMonoid α] {n : } {a : α} {s : Fin nFinset α} :
                                                                              a (List.ofFn s).sum ∃ (f : (i : Fin n) → { x : α // x s i }), (List.ofFn fun (i : Fin n) => (f i)).sum = a
                                                                              theorem Finset.mem_pow {α : Type u_2} [DecidableEq α] [Monoid α] {s : Finset α} {a : α} {n : } :
                                                                              a s ^ n ∃ (f : Fin n{ x : α // x s }), (List.ofFn fun (i : Fin n) => (f i)).prod = a
                                                                              theorem Finset.mem_nsmul {α : Type u_2} [DecidableEq α] [AddMonoid α] {s : Finset α} {a : α} {n : } :
                                                                              a n s ∃ (f : Fin n{ x : α // x s }), (List.ofFn fun (i : Fin n) => (f i)).sum = a
                                                                              @[simp]
                                                                              theorem Finset.empty_pow {α : Type u_2} [DecidableEq α] [Monoid α] {n : } (hn : n 0) :
                                                                              @[simp]
                                                                              theorem Finset.nsmul_empty {α : Type u_2} [DecidableEq α] [AddMonoid α] {n : } (hn : n 0) :
                                                                              @[deprecated Finset.nsmul_empty]
                                                                              theorem Finset.empty_nsmul {α : Type u_2} [DecidableEq α] [AddMonoid α] {n : } (hn : n 0) :

                                                                              Alias of Finset.nsmul_empty.

                                                                              @[simp]
                                                                              theorem Finset.singleton_pow {α : Type u_2} [DecidableEq α] [Monoid α] (a : α) (n : ) :
                                                                              {a} ^ n = {a ^ n}
                                                                              @[simp]
                                                                              theorem Finset.nsmul_singleton {α : Type u_2} [DecidableEq α] [AddMonoid α] (a : α) (n : ) :
                                                                              n {a} = {n a}
                                                                              theorem Finset.card_pow_le {α : Type u_2} [DecidableEq α] [Monoid α] {s : Finset α} {n : } :
                                                                              (s ^ n).card s.card ^ n
                                                                              theorem Finset.card_nsmul_le {α : Type u_2} [DecidableEq α] [AddMonoid α] {s : Finset α} {n : } :
                                                                              (n s).card s.card ^ n
                                                                              theorem Finset.mul_univ_of_one_mem {α : Type u_2} [DecidableEq α] [Monoid α] {s : Finset α} [Fintype α] (hs : 1 s) :
                                                                              s * Finset.univ = Finset.univ
                                                                              theorem Finset.add_univ_of_zero_mem {α : Type u_2} [DecidableEq α] [AddMonoid α] {s : Finset α} [Fintype α] (hs : 0 s) :
                                                                              s + Finset.univ = Finset.univ
                                                                              theorem Finset.univ_mul_of_one_mem {α : Type u_2} [DecidableEq α] [Monoid α] {t : Finset α} [Fintype α] (ht : 1 t) :
                                                                              Finset.univ * t = Finset.univ
                                                                              theorem Finset.univ_add_of_zero_mem {α : Type u_2} [DecidableEq α] [AddMonoid α] {t : Finset α} [Fintype α] (ht : 0 t) :
                                                                              Finset.univ + t = Finset.univ
                                                                              @[simp]
                                                                              theorem Finset.univ_mul_univ {α : Type u_2} [DecidableEq α] [Monoid α] [Fintype α] :
                                                                              Finset.univ * Finset.univ = Finset.univ
                                                                              @[simp]
                                                                              theorem Finset.univ_add_univ {α : Type u_2} [DecidableEq α] [AddMonoid α] [Fintype α] :
                                                                              Finset.univ + Finset.univ = Finset.univ
                                                                              @[simp]
                                                                              theorem Finset.univ_pow {α : Type u_2} [DecidableEq α] [Monoid α] {n : } [Fintype α] (hn : n 0) :
                                                                              Finset.univ ^ n = Finset.univ
                                                                              @[simp]
                                                                              theorem Finset.nsmul_univ {α : Type u_2} [DecidableEq α] [AddMonoid α] {n : } [Fintype α] (hn : n 0) :
                                                                              n Finset.univ = Finset.univ
                                                                              theorem IsUnit.finset {α : Type u_2} [DecidableEq α] [Monoid α] {a : α} :
                                                                              IsUnit aIsUnit {a}
                                                                              theorem IsAddUnit.finset {α : Type u_2} [DecidableEq α] [AddMonoid α] {a : α} :
                                                                              theorem Finset.image_op_pow {α : Type u_2} [DecidableEq α] [Monoid α] (s : Finset α) (n : ) :
                                                                              Finset.image MulOpposite.op (s ^ n) = Finset.image MulOpposite.op s ^ n
                                                                              theorem Finset.image_op_nsmul {α : Type u_2} [DecidableEq α] [AddMonoid α] (s : Finset α) (n : ) :
                                                                              Finset.image AddOpposite.op (n s) = n Finset.image AddOpposite.op s
                                                                              theorem Finset.map_op_pow {α : Type u_2} [DecidableEq α] [Monoid α] (s : Finset α) (n : ) :
                                                                              Finset.map MulOpposite.opEquiv.toEmbedding (s ^ n) = Finset.map MulOpposite.opEquiv.toEmbedding s ^ n
                                                                              theorem Finset.map_op_nsmul {α : Type u_2} [DecidableEq α] [AddMonoid α] (s : Finset α) (n : ) :
                                                                              Finset.map AddOpposite.opEquiv.toEmbedding (n s) = n Finset.map AddOpposite.opEquiv.toEmbedding s

                                                                              Finset α is a CommMonoid under pointwise operations if α is.

                                                                              Equations
                                                                              Instances For

                                                                                Finset α is an AddCommMonoid under pointwise operations if α is.

                                                                                Equations
                                                                                Instances For
                                                                                  @[simp]
                                                                                  theorem Finset.coe_prod {α : Type u_2} [DecidableEq α] [CommMonoid α] {ι : Type u_5} (s : Finset ι) (f : ιFinset α) :
                                                                                  (∏ is, f i) = is, (f i)
                                                                                  @[simp]
                                                                                  theorem Finset.coe_sum {α : Type u_2} [DecidableEq α] [AddCommMonoid α] {ι : Type u_5} (s : Finset ι) (f : ιFinset α) :
                                                                                  (∑ is, f i) = is, (f i)
                                                                                  @[simp]
                                                                                  theorem Finset.coe_zpow {α : Type u_2} [DecidableEq α] [DivisionMonoid α] (s : Finset α) (n : ) :
                                                                                  (s ^ n) = s ^ n
                                                                                  @[simp]
                                                                                  theorem Finset.coe_zsmul {α : Type u_2} [DecidableEq α] [SubtractionMonoid α] (s : Finset α) (n : ) :
                                                                                  (n s) = n s
                                                                                  theorem Finset.mul_eq_one_iff {α : Type u_2} [DecidableEq α] [DivisionMonoid α] {s t : Finset α} :
                                                                                  s * t = 1 ∃ (a : α) (b : α), s = {a} t = {b} a * b = 1
                                                                                  theorem Finset.add_eq_zero_iff {α : Type u_2} [DecidableEq α] [SubtractionMonoid α] {s t : Finset α} :
                                                                                  s + t = 0 ∃ (a : α) (b : α), s = {a} t = {b} a + b = 0

                                                                                  Finset α is a division monoid under pointwise operations if α is.

                                                                                  Equations
                                                                                  Instances For

                                                                                    Finset α is a subtraction monoid under pointwise operations if α is.

                                                                                    Equations
                                                                                    Instances For
                                                                                      @[simp]
                                                                                      theorem Finset.isUnit_iff {α : Type u_2} [DecidableEq α] [DivisionMonoid α] {s : Finset α} :
                                                                                      IsUnit s ∃ (a : α), s = {a} IsUnit a
                                                                                      @[simp]
                                                                                      theorem Finset.isAddUnit_iff {α : Type u_2} [DecidableEq α] [SubtractionMonoid α] {s : Finset α} :
                                                                                      IsAddUnit s ∃ (a : α), s = {a} IsAddUnit a
                                                                                      @[simp]
                                                                                      theorem Finset.isUnit_coe {α : Type u_2} [DecidableEq α] [DivisionMonoid α] {s : Finset α} :
                                                                                      @[simp]
                                                                                      theorem Finset.isAddUnit_coe {α : Type u_2} [DecidableEq α] [SubtractionMonoid α] {s : Finset α} :
                                                                                      @[simp]
                                                                                      theorem Finset.univ_div_univ {α : Type u_2} [DecidableEq α] [DivisionMonoid α] [Fintype α] :
                                                                                      Finset.univ / Finset.univ = Finset.univ
                                                                                      @[simp]
                                                                                      theorem Finset.univ_sub_univ {α : Type u_2} [DecidableEq α] [SubtractionMonoid α] [Fintype α] :
                                                                                      Finset.univ - Finset.univ = Finset.univ
                                                                                      theorem Finset.subset_div_left {α : Type u_2} [DecidableEq α] [DivisionMonoid α] {s t : Finset α} (ht : 1 t) :
                                                                                      s s / t
                                                                                      theorem Finset.subset_sub_left {α : Type u_2} [DecidableEq α] [SubtractionMonoid α] {s t : Finset α} (ht : 0 t) :
                                                                                      s s - t
                                                                                      theorem Finset.inv_subset_div_right {α : Type u_2} [DecidableEq α] [DivisionMonoid α] {s t : Finset α} (hs : 1 s) :
                                                                                      t⁻¹ s / t
                                                                                      theorem Finset.neg_subset_sub_right {α : Type u_2} [DecidableEq α] [SubtractionMonoid α] {s t : Finset α} (hs : 0 s) :
                                                                                      -t s - t
                                                                                      @[simp]
                                                                                      theorem Finset.empty_zpow {α : Type u_2} [DecidableEq α] [DivisionMonoid α] {n : } (hn : n 0) :
                                                                                      @[simp]
                                                                                      theorem Finset.zsmul_empty {α : Type u_2} [DecidableEq α] [SubtractionMonoid α] {n : } (hn : n 0) :
                                                                                      @[simp]
                                                                                      theorem Finset.singleton_zpow {α : Type u_2} [DecidableEq α] [DivisionMonoid α] (a : α) (n : ) :
                                                                                      {a} ^ n = {a ^ n}
                                                                                      @[simp]
                                                                                      theorem Finset.zsmul_singleton {α : Type u_2} [DecidableEq α] [SubtractionMonoid α] (a : α) (n : ) :
                                                                                      n {a} = {n a}

                                                                                      Finset α is a commutative division monoid under pointwise operations if α is.

                                                                                      Equations
                                                                                      Instances For

                                                                                        Finset α is a commutative subtraction monoid under pointwise operations if α is.

                                                                                        Equations
                                                                                        Instances For

                                                                                          Note that Finset is not a Group because s / s ≠ 1 in general.

                                                                                          @[simp]
                                                                                          theorem Finset.one_mem_div_iff {α : Type u_2} [DecidableEq α] [Group α] {s t : Finset α} :
                                                                                          1 s / t ¬Disjoint s t
                                                                                          @[simp]
                                                                                          theorem Finset.zero_mem_sub_iff {α : Type u_2} [DecidableEq α] [AddGroup α] {s t : Finset α} :
                                                                                          0 s - t ¬Disjoint s t
                                                                                          theorem Finset.not_one_mem_div_iff {α : Type u_2} [DecidableEq α] [Group α] {s t : Finset α} :
                                                                                          1s / t Disjoint s t
                                                                                          theorem Finset.not_zero_mem_sub_iff {α : Type u_2} [DecidableEq α] [AddGroup α] {s t : Finset α} :
                                                                                          0s - t Disjoint s t
                                                                                          theorem Finset.Nonempty.one_mem_div {α : Type u_2} [DecidableEq α] [Group α] {s : Finset α} (h : s.Nonempty) :
                                                                                          1 s / s
                                                                                          theorem Finset.Nonempty.zero_mem_sub {α : Type u_2} [DecidableEq α] [AddGroup α] {s : Finset α} (h : s.Nonempty) :
                                                                                          0 s - s
                                                                                          theorem Finset.isUnit_singleton {α : Type u_2} [DecidableEq α] [Group α] (a : α) :
                                                                                          IsUnit {a}
                                                                                          theorem Finset.isAddUnit_singleton {α : Type u_2} [DecidableEq α] [AddGroup α] (a : α) :
                                                                                          theorem Finset.isUnit_iff_singleton {α : Type u_2} [DecidableEq α] [Group α] {s : Finset α} :
                                                                                          IsUnit s ∃ (a : α), s = {a}
                                                                                          @[simp]
                                                                                          theorem Finset.isUnit_iff_singleton_aux {α : Type u_5} [Group α] {s : Finset α} :
                                                                                          (∃ (a : α), s = {a} IsUnit a) ∃ (a : α), s = {a}
                                                                                          @[simp]
                                                                                          theorem Finset.image_mul_left {α : Type u_2} [DecidableEq α] [Group α] {t : Finset α} {a : α} :
                                                                                          Finset.image (fun (b : α) => a * b) t = t.preimage (fun (b : α) => a⁻¹ * b)
                                                                                          @[simp]
                                                                                          theorem Finset.image_add_left {α : Type u_2} [DecidableEq α] [AddGroup α] {t : Finset α} {a : α} :
                                                                                          Finset.image (fun (b : α) => a + b) t = t.preimage (fun (b : α) => -a + b)
                                                                                          @[simp]
                                                                                          theorem Finset.image_mul_right {α : Type u_2} [DecidableEq α] [Group α] {t : Finset α} {b : α} :
                                                                                          Finset.image (fun (x : α) => x * b) t = t.preimage (fun (x : α) => x * b⁻¹)
                                                                                          @[simp]
                                                                                          theorem Finset.image_add_right {α : Type u_2} [DecidableEq α] [AddGroup α] {t : Finset α} {b : α} :
                                                                                          Finset.image (fun (x : α) => x + b) t = t.preimage (fun (x : α) => x + -b)
                                                                                          theorem Finset.image_mul_left' {α : Type u_2} [DecidableEq α] [Group α] {t : Finset α} {a : α} :
                                                                                          Finset.image (fun (b : α) => a⁻¹ * b) t = t.preimage (fun (b : α) => a * b)
                                                                                          theorem Finset.image_add_left' {α : Type u_2} [DecidableEq α] [AddGroup α] {t : Finset α} {a : α} :
                                                                                          Finset.image (fun (b : α) => -a + b) t = t.preimage (fun (b : α) => a + b)
                                                                                          theorem Finset.image_mul_right' {α : Type u_2} [DecidableEq α] [Group α] {t : Finset α} {b : α} :
                                                                                          Finset.image (fun (x : α) => x * b⁻¹) t = t.preimage (fun (x : α) => x * b)
                                                                                          theorem Finset.image_add_right' {α : Type u_2} [DecidableEq α] [AddGroup α] {t : Finset α} {b : α} :
                                                                                          Finset.image (fun (x : α) => x + -b) t = t.preimage (fun (x : α) => x + b)
                                                                                          theorem Finset.image_div {F : Type u_1} {α : Type u_2} {β : Type u_3} [DecidableEq α] [DecidableEq β] [Group α] [DivisionMonoid β] [FunLike F α β] [MonoidHomClass F α β] (f : F) {s t : Finset α} :
                                                                                          Finset.image (⇑f) (s / t) = Finset.image (⇑f) s / Finset.image (⇑f) t
                                                                                          @[simp]
                                                                                          theorem Finset.preimage_mul_left_singleton {α : Type u_2} [Group α] {a b : α} :
                                                                                          {b}.preimage (fun (x : α) => a * x) = {a⁻¹ * b}
                                                                                          @[simp]
                                                                                          theorem Finset.preimage_add_left_singleton {α : Type u_2} [AddGroup α] {a b : α} :
                                                                                          {b}.preimage (fun (x : α) => a + x) = {-a + b}
                                                                                          @[simp]
                                                                                          theorem Finset.preimage_mul_right_singleton {α : Type u_2} [Group α] {a b : α} :
                                                                                          {b}.preimage (fun (x : α) => x * a) = {b * a⁻¹}
                                                                                          @[simp]
                                                                                          theorem Finset.preimage_add_right_singleton {α : Type u_2} [AddGroup α] {a b : α} :
                                                                                          {b}.preimage (fun (x : α) => x + a) = {b + -a}
                                                                                          @[simp]
                                                                                          theorem Finset.preimage_mul_left_one {α : Type u_2} [Group α] {a : α} :
                                                                                          Finset.preimage 1 (fun (x : α) => a * x) = {a⁻¹}
                                                                                          @[simp]
                                                                                          theorem Finset.preimage_add_left_zero {α : Type u_2} [AddGroup α] {a : α} :
                                                                                          Finset.preimage 0 (fun (x : α) => a + x) = {-a}
                                                                                          @[simp]
                                                                                          theorem Finset.preimage_mul_right_one {α : Type u_2} [Group α] {b : α} :
                                                                                          Finset.preimage 1 (fun (x : α) => x * b) = {b⁻¹}
                                                                                          @[simp]
                                                                                          theorem Finset.preimage_add_right_zero {α : Type u_2} [AddGroup α] {b : α} :
                                                                                          Finset.preimage 0 (fun (x : α) => x + b) = {-b}
                                                                                          theorem Finset.preimage_mul_left_one' {α : Type u_2} [Group α] {a : α} :
                                                                                          Finset.preimage 1 (fun (x : α) => a⁻¹ * x) = {a}
                                                                                          theorem Finset.preimage_add_left_zero' {α : Type u_2} [AddGroup α] {a : α} :
                                                                                          Finset.preimage 0 (fun (x : α) => -a + x) = {a}
                                                                                          theorem Finset.preimage_mul_right_one' {α : Type u_2} [Group α] {b : α} :
                                                                                          Finset.preimage 1 (fun (x : α) => x * b⁻¹) = {b}
                                                                                          theorem Finset.preimage_add_right_zero' {α : Type u_2} [AddGroup α] {b : α} :
                                                                                          Finset.preimage 0 (fun (x : α) => x + -b) = {b}

                                                                                          Scalar subtraction of finsets #

                                                                                          def Finset.vsub {α : Type u_2} {β : Type u_3} [VSub α β] [DecidableEq α] :
                                                                                          VSub (Finset α) (Finset β)

                                                                                          The pointwise subtraction of two finsets s and t: s -ᵥ t = {x -ᵥ y | x ∈ s, y ∈ t}.

                                                                                          Equations
                                                                                          Instances For
                                                                                            theorem Finset.vsub_def {α : Type u_2} {β : Type u_3} [VSub α β] [DecidableEq α] {s t : Finset β} :
                                                                                            s -ᵥ t = Finset.image₂ (fun (x1 x2 : β) => x1 -ᵥ x2) s t
                                                                                            @[simp]
                                                                                            theorem Finset.image_vsub_product {α : Type u_2} {β : Type u_3} [VSub α β] [DecidableEq α] {s t : Finset β} :
                                                                                            Finset.image₂ (fun (x1 x2 : β) => x1 -ᵥ x2) s t = s -ᵥ t
                                                                                            theorem Finset.mem_vsub {α : Type u_2} {β : Type u_3} [VSub α β] [DecidableEq α] {s t : Finset β} {a : α} :
                                                                                            a s -ᵥ t bs, ct, b -ᵥ c = a
                                                                                            @[simp]
                                                                                            theorem Finset.coe_vsub {α : Type u_2} {β : Type u_3} [VSub α β] [DecidableEq α] (s t : Finset β) :
                                                                                            (s -ᵥ t) = s -ᵥ t
                                                                                            theorem Finset.vsub_mem_vsub {α : Type u_2} {β : Type u_3} [VSub α β] [DecidableEq α] {s t : Finset β} {b c : β} :
                                                                                            b sc tb -ᵥ c s -ᵥ t
                                                                                            theorem Finset.vsub_card_le {α : Type u_2} {β : Type u_3} [VSub α β] [DecidableEq α] {s t : Finset β} :
                                                                                            (s -ᵥ t).card s.card * t.card
                                                                                            @[simp]
                                                                                            theorem Finset.empty_vsub {α : Type u_2} {β : Type u_3} [VSub α β] [DecidableEq α] (t : Finset β) :
                                                                                            @[simp]
                                                                                            theorem Finset.vsub_empty {α : Type u_2} {β : Type u_3} [VSub α β] [DecidableEq α] (s : Finset β) :
                                                                                            @[simp]
                                                                                            theorem Finset.vsub_eq_empty {α : Type u_2} {β : Type u_3} [VSub α β] [DecidableEq α] {s t : Finset β} :
                                                                                            s -ᵥ t = s = t =
                                                                                            @[simp]
                                                                                            theorem Finset.vsub_nonempty {α : Type u_2} {β : Type u_3} [VSub α β] [DecidableEq α] {s t : Finset β} :
                                                                                            (s -ᵥ t).Nonempty s.Nonempty t.Nonempty
                                                                                            theorem Finset.Nonempty.vsub {α : Type u_2} {β : Type u_3} [VSub α β] [DecidableEq α] {s t : Finset β} :
                                                                                            s.Nonemptyt.Nonempty(s -ᵥ t).Nonempty
                                                                                            theorem Finset.Nonempty.of_vsub_left {α : Type u_2} {β : Type u_3} [VSub α β] [DecidableEq α] {s t : Finset β} :
                                                                                            (s -ᵥ t).Nonemptys.Nonempty
                                                                                            theorem Finset.Nonempty.of_vsub_right {α : Type u_2} {β : Type u_3} [VSub α β] [DecidableEq α] {s t : Finset β} :
                                                                                            (s -ᵥ t).Nonemptyt.Nonempty
                                                                                            @[simp]
                                                                                            theorem Finset.vsub_singleton {α : Type u_2} {β : Type u_3} [VSub α β] [DecidableEq α] {s : Finset β} (b : β) :
                                                                                            s -ᵥ {b} = Finset.image (fun (x : β) => x -ᵥ b) s
                                                                                            theorem Finset.singleton_vsub {α : Type u_2} {β : Type u_3} [VSub α β] [DecidableEq α] {t : Finset β} (a : β) :
                                                                                            {a} -ᵥ t = Finset.image (fun (x : β) => a -ᵥ x) t
                                                                                            theorem Finset.singleton_vsub_singleton {α : Type u_2} {β : Type u_3} [VSub α β] [DecidableEq α] (a b : β) :
                                                                                            {a} -ᵥ {b} = {a -ᵥ b}
                                                                                            theorem Finset.vsub_subset_vsub {α : Type u_2} {β : Type u_3} [VSub α β] [DecidableEq α] {s₁ s₂ t₁ t₂ : Finset β} :
                                                                                            s₁ s₂t₁ t₂s₁ -ᵥ t₁ s₂ -ᵥ t₂
                                                                                            theorem Finset.vsub_subset_vsub_left {α : Type u_2} {β : Type u_3} [VSub α β] [DecidableEq α] {s t₁ t₂ : Finset β} :
                                                                                            t₁ t₂s -ᵥ t₁ s -ᵥ t₂
                                                                                            theorem Finset.vsub_subset_vsub_right {α : Type u_2} {β : Type u_3} [VSub α β] [DecidableEq α] {s₁ s₂ t : Finset β} :
                                                                                            s₁ s₂s₁ -ᵥ t s₂ -ᵥ t
                                                                                            theorem Finset.vsub_subset_iff {α : Type u_2} {β : Type u_3} [VSub α β] [DecidableEq α] {s t : Finset β} {u : Finset α} :
                                                                                            s -ᵥ t u xs, yt, x -ᵥ y u
                                                                                            theorem Finset.union_vsub {α : Type u_2} {β : Type u_3} [VSub α β] [DecidableEq α] {s₁ s₂ t : Finset β} [DecidableEq β] :
                                                                                            s₁ s₂ -ᵥ t = s₁ -ᵥ t (s₂ -ᵥ t)
                                                                                            theorem Finset.vsub_union {α : Type u_2} {β : Type u_3} [VSub α β] [DecidableEq α] {s t₁ t₂ : Finset β} [DecidableEq β] :
                                                                                            s -ᵥ (t₁ t₂) = s -ᵥ t₁ (s -ᵥ t₂)
                                                                                            theorem Finset.inter_vsub_subset {α : Type u_2} {β : Type u_3} [VSub α β] [DecidableEq α] {s₁ s₂ t : Finset β} [DecidableEq β] :
                                                                                            s₁ s₂ -ᵥ t (s₁ -ᵥ t) (s₂ -ᵥ t)
                                                                                            theorem Finset.vsub_inter_subset {α : Type u_2} {β : Type u_3} [VSub α β] [DecidableEq α] {s t₁ t₂ : Finset β} [DecidableEq β] :
                                                                                            s -ᵥ t₁ t₂ (s -ᵥ t₁) (s -ᵥ t₂)
                                                                                            theorem Finset.subset_vsub {α : Type u_2} {β : Type u_3} [VSub α β] [DecidableEq α] {u : Finset α} {s t : Set β} :
                                                                                            u s -ᵥ t∃ (s' : Finset β) (t' : Finset β), s' s t' t u s' -ᵥ t'

                                                                                            If a finset u is contained in the pointwise subtraction of two sets s -ᵥ t, we can find two finsets s', t' such that s' ⊆ s, t' ⊆ t and u ⊆ s' -ᵥ t'.

                                                                                            instance Finset.smulCommClass_finset {α : Type u_2} {β : Type u_3} {γ : Type u_4} [DecidableEq γ] [SMul α γ] [SMul β γ] [SMulCommClass α β γ] :
                                                                                            Equations
                                                                                            • =
                                                                                            instance Finset.vaddCommClass_finset {α : Type u_2} {β : Type u_3} {γ : Type u_4} [DecidableEq γ] [VAdd α γ] [VAdd β γ] [VAddCommClass α β γ] :
                                                                                            Equations
                                                                                            • =
                                                                                            instance Finset.smulCommClass_finset' {α : Type u_2} {β : Type u_3} {γ : Type u_4} [DecidableEq γ] [SMul α γ] [SMul β γ] [SMulCommClass α β γ] :
                                                                                            Equations
                                                                                            • =
                                                                                            instance Finset.vaddCommClass_finset' {α : Type u_2} {β : Type u_3} {γ : Type u_4} [DecidableEq γ] [VAdd α γ] [VAdd β γ] [VAddCommClass α β γ] :
                                                                                            Equations
                                                                                            • =
                                                                                            instance Finset.smulCommClass_finset'' {α : Type u_2} {β : Type u_3} {γ : Type u_4} [DecidableEq γ] [SMul α γ] [SMul β γ] [SMulCommClass α β γ] :
                                                                                            Equations
                                                                                            • =
                                                                                            instance Finset.vaddCommClass_finset'' {α : Type u_2} {β : Type u_3} {γ : Type u_4} [DecidableEq γ] [VAdd α γ] [VAdd β γ] [VAddCommClass α β γ] :
                                                                                            Equations
                                                                                            • =
                                                                                            instance Finset.smulCommClass {α : Type u_2} {β : Type u_3} {γ : Type u_4} [DecidableEq γ] [SMul α γ] [SMul β γ] [SMulCommClass α β γ] :
                                                                                            Equations
                                                                                            • =
                                                                                            instance Finset.vaddCommClass {α : Type u_2} {β : Type u_3} {γ : Type u_4} [DecidableEq γ] [VAdd α γ] [VAdd β γ] [VAddCommClass α β γ] :
                                                                                            Equations
                                                                                            • =
                                                                                            instance Finset.isScalarTower {α : Type u_2} {β : Type u_3} {γ : Type u_4} [DecidableEq γ] [SMul α β] [SMul α γ] [SMul β γ] [IsScalarTower α β γ] :
                                                                                            Equations
                                                                                            • =
                                                                                            instance Finset.vaddAssocClass {α : Type u_2} {β : Type u_3} {γ : Type u_4} [DecidableEq γ] [VAdd α β] [VAdd α γ] [VAdd β γ] [VAddAssocClass α β γ] :
                                                                                            Equations
                                                                                            • =
                                                                                            instance Finset.isScalarTower' {α : Type u_2} {β : Type u_3} {γ : Type u_4} [DecidableEq γ] [DecidableEq β] [SMul α β] [SMul α γ] [SMul β γ] [IsScalarTower α β γ] :
                                                                                            Equations
                                                                                            • =
                                                                                            instance Finset.vaddAssocClass' {α : Type u_2} {β : Type u_3} {γ : Type u_4} [DecidableEq γ] [DecidableEq β] [VAdd α β] [VAdd α γ] [VAdd β γ] [VAddAssocClass α β γ] :
                                                                                            Equations
                                                                                            • =
                                                                                            instance Finset.isScalarTower'' {α : Type u_2} {β : Type u_3} {γ : Type u_4} [DecidableEq γ] [DecidableEq β] [SMul α β] [SMul α γ] [SMul β γ] [IsScalarTower α β γ] :
                                                                                            Equations
                                                                                            • =
                                                                                            instance Finset.vaddAssocClass'' {α : Type u_2} {β : Type u_3} {γ : Type u_4} [DecidableEq γ] [DecidableEq β] [VAdd α β] [VAdd α γ] [VAdd β γ] [VAddAssocClass α β γ] :
                                                                                            Equations
                                                                                            • =
                                                                                            instance Finset.isCentralScalar {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] [SMul αᵐᵒᵖ β] [IsCentralScalar α β] :
                                                                                            Equations
                                                                                            • =
                                                                                            instance Finset.isCentralVAdd {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] [VAdd αᵃᵒᵖ β] [IsCentralVAdd α β] :
                                                                                            Equations
                                                                                            • =
                                                                                            def Finset.mulAction {α : Type u_2} {β : Type u_3} [DecidableEq β] [DecidableEq α] [Monoid α] [MulAction α β] :

                                                                                            A multiplicative action of a monoid α on a type β gives a multiplicative action of Finset α on Finset β.

                                                                                            Equations
                                                                                            Instances For
                                                                                              def Finset.addAction {α : Type u_2} {β : Type u_3} [DecidableEq β] [DecidableEq α] [AddMonoid α] [AddAction α β] :

                                                                                              An additive action of an additive monoid α on a type β gives an additive action of Finset α on Finset β

                                                                                              Equations
                                                                                              Instances For
                                                                                                def Finset.mulActionFinset {α : Type u_2} {β : Type u_3} [DecidableEq β] [Monoid α] [MulAction α β] :

                                                                                                A multiplicative action of a monoid on a type β gives a multiplicative action on Finset β.

                                                                                                Equations
                                                                                                Instances For
                                                                                                  def Finset.addActionFinset {α : Type u_2} {β : Type u_3} [DecidableEq β] [AddMonoid α] [AddAction α β] :

                                                                                                  An additive action of an additive monoid on a type β gives an additive action on Finset β.

                                                                                                  Equations
                                                                                                  Instances For
                                                                                                    theorem Finset.op_smul_finset_smul_eq_smul_smul_finset {α : Type u_2} {β : Type u_3} {γ : Type u_4} [DecidableEq β] [DecidableEq γ] [SMul αᵐᵒᵖ β] [SMul β γ] [SMul α γ] (a : α) (s : Finset β) (t : Finset γ) (h : ∀ (a : α) (b : β) (c : γ), (MulOpposite.op a b) c = b a c) :
                                                                                                    (MulOpposite.op a s) t = s a t
                                                                                                    theorem Finset.op_vadd_finset_vadd_eq_vadd_vadd_finset {α : Type u_2} {β : Type u_3} {γ : Type u_4} [DecidableEq β] [DecidableEq γ] [VAdd αᵃᵒᵖ β] [VAdd β γ] [VAdd α γ] (a : α) (s : Finset β) (t : Finset γ) (h : ∀ (a : α) (b : β) (c : γ), AddOpposite.op a +ᵥ b +ᵥ c = b +ᵥ (a +ᵥ c)) :
                                                                                                    theorem Finset.op_smul_finset_subset_mul {α : Type u_2} [Mul α] [DecidableEq α] {s t : Finset α} {a : α} :
                                                                                                    a tMulOpposite.op a s s * t
                                                                                                    theorem Finset.op_vadd_finset_subset_add {α : Type u_2} [Add α] [DecidableEq α] {s t : Finset α} {a : α} :
                                                                                                    a tAddOpposite.op a +ᵥ s s + t
                                                                                                    @[simp]
                                                                                                    theorem Finset.biUnion_op_smul_finset {α : Type u_2} [Mul α] [DecidableEq α] (s t : Finset α) :
                                                                                                    (t.biUnion fun (a : α) => MulOpposite.op a s) = s * t
                                                                                                    @[simp]
                                                                                                    theorem Finset.biUnion_op_vadd_finset {α : Type u_2} [Add α] [DecidableEq α] (s t : Finset α) :
                                                                                                    (t.biUnion fun (a : α) => AddOpposite.op a +ᵥ s) = s + t
                                                                                                    theorem Finset.mul_subset_iff_left {α : Type u_2} [Mul α] [DecidableEq α] {s t u : Finset α} :
                                                                                                    s * t u as, a t u
                                                                                                    theorem Finset.add_subset_iff_left {α : Type u_2} [Add α] [DecidableEq α] {s t u : Finset α} :
                                                                                                    s + t u as, a +ᵥ t u
                                                                                                    theorem Finset.mul_subset_iff_right {α : Type u_2} [Mul α] [DecidableEq α] {s t u : Finset α} :
                                                                                                    s * t u bt, MulOpposite.op b s u
                                                                                                    theorem Finset.add_subset_iff_right {α : Type u_2} [Add α] [DecidableEq α] {s t u : Finset α} :
                                                                                                    s + t u bt, AddOpposite.op b +ᵥ s u
                                                                                                    theorem Finset.op_smul_finset_mul_eq_mul_smul_finset {α : Type u_2} [Semigroup α] [DecidableEq α] (a : α) (s t : Finset α) :
                                                                                                    MulOpposite.op a s * t = s * a t
                                                                                                    theorem Finset.op_vadd_finset_add_eq_add_vadd_finset {α : Type u_2} [AddSemigroup α] [DecidableEq α] (a : α) (s t : Finset α) :
                                                                                                    AddOpposite.op a +ᵥ s + t = s + (a +ᵥ t)
                                                                                                    theorem Finset.pairwiseDisjoint_smul_iff {α : Type u_2} [Mul α] [IsLeftCancelMul α] [DecidableEq α] {s : Set α} {t : Finset α} :
                                                                                                    (s.PairwiseDisjoint fun (x : α) => x t) Set.InjOn (fun (p : α × α) => p.1 * p.2) (s ×ˢ t)
                                                                                                    theorem Finset.pairwiseDisjoint_vadd_iff {α : Type u_2} [Add α] [IsLeftCancelAdd α] [DecidableEq α] {s : Set α} {t : Finset α} :
                                                                                                    (s.PairwiseDisjoint fun (x : α) => x +ᵥ t) Set.InjOn (fun (p : α × α) => p.1 + p.2) (s ×ˢ t)
                                                                                                    @[simp]
                                                                                                    theorem Finset.card_singleton_mul {α : Type u_2} [Mul α] [IsLeftCancelMul α] [DecidableEq α] (t : Finset α) (a : α) :
                                                                                                    ({a} * t).card = t.card
                                                                                                    @[simp]
                                                                                                    theorem Finset.card_singleton_add {α : Type u_2} [Add α] [IsLeftCancelAdd α] [DecidableEq α] (t : Finset α) (a : α) :
                                                                                                    ({a} + t).card = t.card
                                                                                                    theorem Finset.singleton_mul_inter {α : Type u_2} [Mul α] [IsLeftCancelMul α] [DecidableEq α] (s t : Finset α) (a : α) :
                                                                                                    {a} * (s t) = {a} * s ({a} * t)
                                                                                                    theorem Finset.singleton_add_inter {α : Type u_2} [Add α] [IsLeftCancelAdd α] [DecidableEq α] (s t : Finset α) (a : α) :
                                                                                                    {a} + s t = ({a} + s) ({a} + t)
                                                                                                    theorem Finset.card_le_card_mul_left {α : Type u_2} [Mul α] [IsLeftCancelMul α] [DecidableEq α] (t : Finset α) {s : Finset α} (hs : s.Nonempty) :
                                                                                                    t.card (s * t).card
                                                                                                    theorem Finset.card_le_card_add_left {α : Type u_2} [Add α] [IsLeftCancelAdd α] [DecidableEq α] (t : Finset α) {s : Finset α} (hs : s.Nonempty) :
                                                                                                    t.card (s + t).card
                                                                                                    theorem Finset.card_le_card_mul_self {α : Type u_2} [Mul α] [IsLeftCancelMul α] [DecidableEq α] {s : Finset α} :
                                                                                                    s.card (s * s).card

                                                                                                    The size of s * s is at least the size of s, version with left-cancellative multiplication. See card_le_card_mul_self' for the version with right-cancellative multiplication.

                                                                                                    theorem Finset.card_le_card_add_self {α : Type u_2} [Add α] [IsLeftCancelAdd α] [DecidableEq α] {s : Finset α} :
                                                                                                    s.card (s + s).card

                                                                                                    The size of s + s is at least the size of s, version with left-cancellative addition. See card_le_card_add_self' for the version with right-cancellative addition.

                                                                                                    @[simp]
                                                                                                    theorem Finset.card_mul_singleton {α : Type u_2} [Mul α] [IsRightCancelMul α] [DecidableEq α] (s : Finset α) (a : α) :
                                                                                                    (s * {a}).card = s.card
                                                                                                    @[simp]
                                                                                                    theorem Finset.card_add_singleton {α : Type u_2} [Add α] [IsRightCancelAdd α] [DecidableEq α] (s : Finset α) (a : α) :
                                                                                                    (s + {a}).card = s.card
                                                                                                    theorem Finset.inter_mul_singleton {α : Type u_2} [Mul α] [IsRightCancelMul α] [DecidableEq α] (s t : Finset α) (a : α) :
                                                                                                    s t * {a} = s * {a} (t * {a})
                                                                                                    theorem Finset.inter_add_singleton {α : Type u_2} [Add α] [IsRightCancelAdd α] [DecidableEq α] (s t : Finset α) (a : α) :
                                                                                                    s t + {a} = (s + {a}) (t + {a})
                                                                                                    theorem Finset.card_le_card_mul_right {α : Type u_2} [Mul α] [IsRightCancelMul α] [DecidableEq α] (s : Finset α) {t : Finset α} (ht : t.Nonempty) :
                                                                                                    s.card (s * t).card
                                                                                                    theorem Finset.card_le_card_add_right {α : Type u_2} [Add α] [IsRightCancelAdd α] [DecidableEq α] (s : Finset α) {t : Finset α} (ht : t.Nonempty) :
                                                                                                    s.card (s + t).card
                                                                                                    theorem Finset.card_le_card_mul_self' {α : Type u_2} [Mul α] [IsRightCancelMul α] [DecidableEq α] {s : Finset α} :
                                                                                                    s.card (s * s).card

                                                                                                    The size of s * s is at least the size of s, version with right-cancellative multiplication. See card_le_card_mul_self for the version with left-cancellative multiplication.

                                                                                                    theorem Finset.card_le_card_add_self' {α : Type u_2} [Add α] [IsRightCancelAdd α] [DecidableEq α] {s : Finset α} :
                                                                                                    s.card (s + s).card

                                                                                                    The size of s + s is at least the size of s, version with right-cancellative addition. See card_le_card_add_self for the version with left-cancellative addition.

                                                                                                    theorem Finset.Nonempty.card_pow_mono {α : Type u_2} [DecidableEq α] [CancelMonoid α] {s : Finset α} (hs : s.Nonempty) :
                                                                                                    Monotone fun (n : ) => (s ^ n).card

                                                                                                    See Finset.card_pow_mono for a version that works for the empty set.

                                                                                                    theorem Finset.Nonempty.card_nsmul_mono {α : Type u_2} [DecidableEq α] [AddCancelMonoid α] {s : Finset α} (hs : s.Nonempty) :
                                                                                                    Monotone fun (n : ) => (n s).card

                                                                                                    See Finset.card_nsmul_mono for a version that works for the empty set.

                                                                                                    theorem Finset.card_pow_mono {α : Type u_2} [DecidableEq α] [CancelMonoid α] {s : Finset α} {m n : } (hm : m 0) (hmn : m n) :
                                                                                                    (s ^ m).card (s ^ n).card

                                                                                                    See Finset.Nonempty.card_pow_mono for a version that works for zero powers.

                                                                                                    theorem Finset.card_nsmul_mono {α : Type u_2} [DecidableEq α] [AddCancelMonoid α] {s : Finset α} {m n : } (hm : m 0) (hmn : m n) :
                                                                                                    (m s).card (n s).card

                                                                                                    See Finset.Nonempty.card_nsmul_mono for a version that works for zero scalars.

                                                                                                    theorem Finset.card_le_card_pow {α : Type u_2} [DecidableEq α] [CancelMonoid α] {s : Finset α} {n : } (hn : n 0) :
                                                                                                    s.card (s ^ n).card
                                                                                                    theorem Finset.card_le_card_nsmul {α : Type u_2} [DecidableEq α] [AddCancelMonoid α] {s : Finset α} {n : } (hn : n 0) :
                                                                                                    s.card (n s).card
                                                                                                    theorem Finset.card_le_card_div_left {α : Type u_2} [Group α] [DecidableEq α] {s t : Finset α} (hs : s.Nonempty) :
                                                                                                    t.card (s / t).card
                                                                                                    theorem Finset.card_le_card_sub_left {α : Type u_2} [AddGroup α] [DecidableEq α] {s t : Finset α} (hs : s.Nonempty) :
                                                                                                    t.card (s - t).card
                                                                                                    theorem Finset.card_le_card_div_right {α : Type u_2} [Group α] [DecidableEq α] {s t : Finset α} (ht : t.Nonempty) :
                                                                                                    s.card (s / t).card
                                                                                                    theorem Finset.card_le_card_sub_right {α : Type u_2} [AddGroup α] [DecidableEq α] {s t : Finset α} (ht : t.Nonempty) :
                                                                                                    s.card (s - t).card
                                                                                                    theorem Finset.card_le_card_div_self {α : Type u_2} [Group α] [DecidableEq α] {s : Finset α} :
                                                                                                    s.card (s / s).card
                                                                                                    theorem Finset.card_le_card_sub_self {α : Type u_2} [AddGroup α] [DecidableEq α] {s : Finset α} :
                                                                                                    s.card (s - s).card
                                                                                                    theorem Finset.image_smul_comm {α : Type u_2} {β : Type u_3} {γ : Type u_4} [DecidableEq β] [DecidableEq γ] [SMul α β] [SMul α γ] (f : βγ) (a : α) (s : Finset β) :
                                                                                                    (∀ (b : β), f (a b) = a f b)Finset.image f (a s) = a Finset.image f s
                                                                                                    theorem Finset.image_vadd_comm {α : Type u_2} {β : Type u_3} {γ : Type u_4} [DecidableEq β] [DecidableEq γ] [VAdd α β] [VAdd α γ] (f : βγ) (a : α) (s : Finset β) :
                                                                                                    (∀ (b : β), f (a +ᵥ b) = a +ᵥ f b)Finset.image f (a +ᵥ s) = a +ᵥ Finset.image f s
                                                                                                    theorem Finset.image_smul_distrib {F : Type u_1} {α : Type u_2} {β : Type u_3} [DecidableEq α] [DecidableEq β] [Monoid α] [Monoid β] [FunLike F α β] [MonoidHomClass F α β] (f : F) (a : α) (s : Finset α) :
                                                                                                    Finset.image (⇑f) (a s) = f a Finset.image (⇑f) s
                                                                                                    theorem Finset.image_vadd_distrib {F : Type u_1} {α : Type u_2} {β : Type u_3} [DecidableEq α] [DecidableEq β] [AddMonoid α] [AddMonoid β] [FunLike F α β] [AddMonoidHomClass F α β] (f : F) (a : α) (s : Finset α) :
                                                                                                    Finset.image (⇑f) (a +ᵥ s) = f a +ᵥ Finset.image (⇑f) s
                                                                                                    @[simp]
                                                                                                    theorem Finset.smul_mem_smul_finset_iff {α : Type u_2} {β : Type u_3} [DecidableEq β] [Group α] [MulAction α β] {s : Finset β} {b : β} (a : α) :
                                                                                                    a b a s b s
                                                                                                    @[simp]
                                                                                                    theorem Finset.vadd_mem_vadd_finset_iff {α : Type u_2} {β : Type u_3} [DecidableEq β] [AddGroup α] [AddAction α β] {s : Finset β} {b : β} (a : α) :
                                                                                                    a +ᵥ b a +ᵥ s b s
                                                                                                    theorem Finset.inv_smul_mem_iff {α : Type u_2} {β : Type u_3} [DecidableEq β] [Group α] [MulAction α β] {s : Finset β} {a : α} {b : β} :
                                                                                                    a⁻¹ b s b a s
                                                                                                    theorem Finset.neg_vadd_mem_iff {α : Type u_2} {β : Type u_3} [DecidableEq β] [AddGroup α] [AddAction α β] {s : Finset β} {a : α} {b : β} :
                                                                                                    -a +ᵥ b s b a +ᵥ s
                                                                                                    theorem Finset.mem_inv_smul_finset_iff {α : Type u_2} {β : Type u_3} [DecidableEq β] [Group α] [MulAction α β] {s : Finset β} {a : α} {b : β} :
                                                                                                    b a⁻¹ s a b s
                                                                                                    theorem Finset.mem_neg_vadd_finset_iff {α : Type u_2} {β : Type u_3} [DecidableEq β] [AddGroup α] [AddAction α β] {s : Finset β} {a : α} {b : β} :
                                                                                                    b -a +ᵥ s a +ᵥ b s
                                                                                                    @[simp]
                                                                                                    theorem Finset.smul_finset_subset_smul_finset_iff {α : Type u_2} {β : Type u_3} [DecidableEq β] [Group α] [MulAction α β] {s t : Finset β} {a : α} :
                                                                                                    a s a t s t
                                                                                                    @[simp]
                                                                                                    theorem Finset.vadd_finset_subset_vadd_finset_iff {α : Type u_2} {β : Type u_3} [DecidableEq β] [AddGroup α] [AddAction α β] {s t : Finset β} {a : α} :
                                                                                                    a +ᵥ s a +ᵥ t s t
                                                                                                    theorem Finset.smul_finset_subset_iff {α : Type u_2} {β : Type u_3} [DecidableEq β] [Group α] [MulAction α β] {s t : Finset β} {a : α} :
                                                                                                    a s t s a⁻¹ t
                                                                                                    theorem Finset.vadd_finset_subset_iff {α : Type u_2} {β : Type u_3} [DecidableEq β] [AddGroup α] [AddAction α β] {s t : Finset β} {a : α} :
                                                                                                    a +ᵥ s t s -a +ᵥ t
                                                                                                    theorem Finset.subset_smul_finset_iff {α : Type u_2} {β : Type u_3} [DecidableEq β] [Group α] [MulAction α β] {s t : Finset β} {a : α} :
                                                                                                    s a t a⁻¹ s t
                                                                                                    theorem Finset.subset_vadd_finset_iff {α : Type u_2} {β : Type u_3} [DecidableEq β] [AddGroup α] [AddAction α β] {s t : Finset β} {a : α} :
                                                                                                    s a +ᵥ t -a +ᵥ s t
                                                                                                    theorem Finset.smul_finset_inter {α : Type u_2} {β : Type u_3} [DecidableEq β] [Group α] [MulAction α β] {s t : Finset β} {a : α} :
                                                                                                    a (s t) = a s a t
                                                                                                    theorem Finset.vadd_finset_inter {α : Type u_2} {β : Type u_3} [DecidableEq β] [AddGroup α] [AddAction α β] {s t : Finset β} {a : α} :
                                                                                                    a +ᵥ s t = (a +ᵥ s) (a +ᵥ t)
                                                                                                    theorem Finset.smul_finset_sdiff {α : Type u_2} {β : Type u_3} [DecidableEq β] [Group α] [MulAction α β] {s t : Finset β} {a : α} :
                                                                                                    a (s \ t) = a s \ a t
                                                                                                    theorem Finset.vadd_finset_sdiff {α : Type u_2} {β : Type u_3} [DecidableEq β] [AddGroup α] [AddAction α β] {s t : Finset β} {a : α} :
                                                                                                    a +ᵥ s \ t = (a +ᵥ s) \ (a +ᵥ t)
                                                                                                    theorem Finset.smul_finset_symmDiff {α : Type u_2} {β : Type u_3} [DecidableEq β] [Group α] [MulAction α β] {s t : Finset β} {a : α} :
                                                                                                    a symmDiff s t = symmDiff (a s) (a t)
                                                                                                    theorem Finset.vadd_finset_symmDiff {α : Type u_2} {β : Type u_3} [DecidableEq β] [AddGroup α] [AddAction α β] {s t : Finset β} {a : α} :
                                                                                                    a +ᵥ symmDiff s t = symmDiff (a +ᵥ s) (a +ᵥ t)
                                                                                                    @[simp]
                                                                                                    theorem Finset.smul_finset_univ {α : Type u_2} {β : Type u_3} [DecidableEq β] [Group α] [MulAction α β] {a : α} [Fintype β] :
                                                                                                    a Finset.univ = Finset.univ
                                                                                                    @[simp]
                                                                                                    theorem Finset.vadd_finset_univ {α : Type u_2} {β : Type u_3} [DecidableEq β] [AddGroup α] [AddAction α β] {a : α} [Fintype β] :
                                                                                                    a +ᵥ Finset.univ = Finset.univ
                                                                                                    @[simp]
                                                                                                    theorem Finset.smul_univ {α : Type u_2} {β : Type u_3} [DecidableEq β] [Group α] [MulAction α β] [Fintype β] {s : Finset α} (hs : s.Nonempty) :
                                                                                                    s Finset.univ = Finset.univ
                                                                                                    @[simp]
                                                                                                    theorem Finset.vadd_univ {α : Type u_2} {β : Type u_3} [DecidableEq β] [AddGroup α] [AddAction α β] [Fintype β] {s : Finset α} (hs : s.Nonempty) :
                                                                                                    s +ᵥ Finset.univ = Finset.univ
                                                                                                    @[simp]
                                                                                                    theorem Finset.card_smul_finset {α : Type u_2} {β : Type u_3} [DecidableEq β] [Group α] [MulAction α β] (a : α) (s : Finset β) :
                                                                                                    (a s).card = s.card
                                                                                                    @[simp]
                                                                                                    theorem Finset.card_vadd_finset {α : Type u_2} {β : Type u_3} [DecidableEq β] [AddGroup α] [AddAction α β] (a : α) (s : Finset β) :
                                                                                                    (a +ᵥ s).card = s.card
                                                                                                    @[simp]
                                                                                                    theorem Finset.dens_smul_finset {α : Type u_2} {β : Type u_3} [DecidableEq β] [Group α] [MulAction α β] [Fintype β] (a : α) (s : Finset β) :
                                                                                                    (a s).dens = s.dens
                                                                                                    @[simp]
                                                                                                    theorem Finset.dens_vadd_finset {α : Type u_2} {β : Type u_3} [DecidableEq β] [AddGroup α] [AddAction α β] [Fintype β] (a : α) (s : Finset β) :
                                                                                                    (a +ᵥ s).dens = s.dens
                                                                                                    theorem Finset.card_dvd_card_smul_right {α : Type u_2} {β : Type u_3} [DecidableEq β] [Group α] [MulAction α β] {t : Finset β} {s : Finset α} :
                                                                                                    ((fun (x : α) => x t) '' s).PairwiseDisjoint idt.card (s t).card

                                                                                                    If the left cosets of t by elements of s are disjoint (but not necessarily distinct!), then the size of t divides the size of s • t.

                                                                                                    theorem Finset.card_dvd_card_vadd_right {α : Type u_2} {β : Type u_3} [DecidableEq β] [AddGroup α] [AddAction α β] {t : Finset β} {s : Finset α} :
                                                                                                    ((fun (x : α) => x +ᵥ t) '' s).PairwiseDisjoint idt.card (s +ᵥ t).card

                                                                                                    If the left cosets of t by elements of s are disjoint (but not necessarily distinct!), then the size of t divides the size of s +ᵥ t.

                                                                                                    theorem Finset.card_dvd_card_mul_left {α : Type u_2} [Group α] [DecidableEq α] {s t : Finset α} :
                                                                                                    ((fun (b : α) => Finset.image (fun (a : α) => a * b) s) '' t).PairwiseDisjoint ids.card (s * t).card

                                                                                                    If the right cosets of s by elements of t are disjoint (but not necessarily distinct!), then the size of s divides the size of s * t.

                                                                                                    theorem Finset.card_dvd_card_add_left {α : Type u_2} [AddGroup α] [DecidableEq α] {s t : Finset α} :
                                                                                                    ((fun (b : α) => Finset.image (fun (a : α) => a + b) s) '' t).PairwiseDisjoint ids.card (s + t).card

                                                                                                    If the right cosets of s by elements of t are disjoint (but not necessarily distinct!), then the size of s divides the size of s + t.

                                                                                                    theorem Finset.card_dvd_card_mul_right {α : Type u_2} [Group α] [DecidableEq α] {s t : Finset α} :
                                                                                                    ((fun (x : α) => x t) '' s).PairwiseDisjoint idt.card (s * t).card

                                                                                                    If the left cosets of t by elements of s are disjoint (but not necessarily distinct!), then the size of t divides the size of s * t.

                                                                                                    theorem Finset.card_dvd_card_add_right {α : Type u_2} [AddGroup α] [DecidableEq α] {s t : Finset α} :
                                                                                                    ((fun (x : α) => x +ᵥ t) '' s).PairwiseDisjoint idt.card (s + t).card

                                                                                                    If the left cosets of t by elements of s are disjoint (but not necessarily distinct!), then the size of t divides the size of s + t.

                                                                                                    @[simp]
                                                                                                    theorem Finset.inv_smul_finset_distrib {α : Type u_2} [Group α] [DecidableEq α] (a : α) (s : Finset α) :
                                                                                                    @[simp]
                                                                                                    theorem Finset.neg_vadd_finset_distrib {α : Type u_2} [AddGroup α] [DecidableEq α] (a : α) (s : Finset α) :
                                                                                                    @[simp]
                                                                                                    theorem Finset.inv_op_smul_finset_distrib {α : Type u_2} [Group α] [DecidableEq α] (a : α) (s : Finset α) :
                                                                                                    @[simp]
                                                                                                    theorem Finset.neg_op_vadd_finset_distrib {α : Type u_2} [AddGroup α] [DecidableEq α] (a : α) (s : Finset α) :
                                                                                                    @[simp]
                                                                                                    theorem Finset.prod_inv_index {α : Type u_2} [CommMonoid α] {ι : Type u_5} [DecidableEq ι] [InvolutiveInv ι] (s : Finset ι) (f : ια) :
                                                                                                    is⁻¹, f i = is, f i⁻¹
                                                                                                    @[simp]
                                                                                                    theorem Finset.sum_neg_index {α : Type u_2} [AddCommMonoid α] {ι : Type u_5} [DecidableEq ι] [InvolutiveNeg ι] (s : Finset ι) (f : ια) :
                                                                                                    i-s, f i = is, f (-i)
                                                                                                    @[simp]
                                                                                                    theorem Finset.prod_neg_index {α : Type u_2} [CommMonoid α] {ι : Type u_5} [DecidableEq ι] [InvolutiveNeg ι] (s : Finset ι) (f : ια) :
                                                                                                    i-s, f i = is, f (-i)
                                                                                                    @[simp]
                                                                                                    theorem Finset.sum_inv_index {α : Type u_2} [AddCommMonoid α] {ι : Type u_5} [DecidableEq ι] [InvolutiveInv ι] (s : Finset ι) (f : ια) :
                                                                                                    is⁻¹, f i = is, f i⁻¹
                                                                                                    theorem Fintype.piFinset_smul {ι : Type u_5} {α : ιType u_6} {β : ιType u_7} [Fintype ι] [DecidableEq ι] [(i : ι) → DecidableEq (β i)] [(i : ι) → SMul (α i) (β i)] (s : (i : ι) → Finset (α i)) (t : (i : ι) → Finset (β i)) :
                                                                                                    theorem Fintype.piFinset_vadd {ι : Type u_5} {α : ιType u_6} {β : ιType u_7} [Fintype ι] [DecidableEq ι] [(i : ι) → DecidableEq (β i)] [(i : ι) → VAdd (α i) (β i)] (s : (i : ι) → Finset (α i)) (t : (i : ι) → Finset (β i)) :
                                                                                                    theorem Fintype.piFinset_smul_finset {ι : Type u_5} {α : ιType u_6} {β : ιType u_7} [Fintype ι] [DecidableEq ι] [(i : ι) → DecidableEq (β i)] [(i : ι) → SMul (α i) (β i)] (a : (i : ι) → α i) (s : (i : ι) → Finset (β i)) :
                                                                                                    (Fintype.piFinset fun (i : ι) => a i s i) = a Fintype.piFinset s
                                                                                                    theorem Fintype.piFinset_vadd_finset {ι : Type u_5} {α : ιType u_6} {β : ιType u_7} [Fintype ι] [DecidableEq ι] [(i : ι) → DecidableEq (β i)] [(i : ι) → VAdd (α i) (β i)] (a : (i : ι) → α i) (s : (i : ι) → Finset (β i)) :
                                                                                                    (Fintype.piFinset fun (i : ι) => a i +ᵥ s i) = a +ᵥ Fintype.piFinset s
                                                                                                    theorem Fintype.piFinset_mul {ι : Type u_5} {α : ιType u_6} [Fintype ι] [DecidableEq ι] [(i : ι) → DecidableEq (α i)] [(i : ι) → Mul (α i)] (s t : (i : ι) → Finset (α i)) :
                                                                                                    (Fintype.piFinset fun (i : ι) => s i * t i) = Fintype.piFinset s * Fintype.piFinset t
                                                                                                    theorem Fintype.piFinset_add {ι : Type u_5} {α : ιType u_6} [Fintype ι] [DecidableEq ι] [(i : ι) → DecidableEq (α i)] [(i : ι) → Add (α i)] (s t : (i : ι) → Finset (α i)) :
                                                                                                    (Fintype.piFinset fun (i : ι) => s i + t i) = Fintype.piFinset s + Fintype.piFinset t
                                                                                                    theorem Fintype.piFinset_div {ι : Type u_5} {α : ιType u_6} [Fintype ι] [DecidableEq ι] [(i : ι) → DecidableEq (α i)] [(i : ι) → Div (α i)] (s t : (i : ι) → Finset (α i)) :
                                                                                                    (Fintype.piFinset fun (i : ι) => s i / t i) = Fintype.piFinset s / Fintype.piFinset t
                                                                                                    theorem Fintype.piFinset_sub {ι : Type u_5} {α : ιType u_6} [Fintype ι] [DecidableEq ι] [(i : ι) → DecidableEq (α i)] [(i : ι) → Sub (α i)] (s t : (i : ι) → Finset (α i)) :
                                                                                                    (Fintype.piFinset fun (i : ι) => s i - t i) = Fintype.piFinset s - Fintype.piFinset t
                                                                                                    @[simp]
                                                                                                    theorem Fintype.piFinset_inv {ι : Type u_5} {α : ιType u_6} [Fintype ι] [DecidableEq ι] [(i : ι) → DecidableEq (α i)] [(i : ι) → Inv (α i)] (s : (i : ι) → Finset (α i)) :
                                                                                                    (Fintype.piFinset fun (i : ι) => (s i)⁻¹) = (Fintype.piFinset s)⁻¹
                                                                                                    @[simp]
                                                                                                    theorem Fintype.piFinset_neg {ι : Type u_5} {α : ιType u_6} [Fintype ι] [DecidableEq ι] [(i : ι) → DecidableEq (α i)] [(i : ι) → Neg (α i)] (s : (i : ι) → Finset (α i)) :
                                                                                                    (Fintype.piFinset fun (i : ι) => -s i) = -Fintype.piFinset s
                                                                                                    instance Set.instFintypeOne {α : Type u_2} [One α] :
                                                                                                    Fintype 1
                                                                                                    Equations
                                                                                                    instance Set.instFintypeZero {α : Type u_2} [Zero α] :
                                                                                                    Fintype 0
                                                                                                    Equations
                                                                                                    @[simp]
                                                                                                    theorem Set.toFinset_one {α : Type u_2} [One α] :
                                                                                                    @[simp]
                                                                                                    theorem Set.toFinset_zero {α : Type u_2} [Zero α] :
                                                                                                    @[simp]
                                                                                                    theorem Set.Finite.toFinset_one {α : Type u_2} [One α] (h : Set.Finite 1 := ) :
                                                                                                    @[simp]
                                                                                                    theorem Set.Finite.toFinset_zero {α : Type u_2} [Zero α] (h : Set.Finite 0 := ) :
                                                                                                    @[simp]
                                                                                                    theorem Set.toFinset_mul {α : Type u_2} [DecidableEq α] [Mul α] (s t : Set α) [Fintype s] [Fintype t] [Fintype (s * t)] :
                                                                                                    (s * t).toFinset = s.toFinset * t.toFinset
                                                                                                    @[simp]
                                                                                                    theorem Set.toFinset_add {α : Type u_2} [DecidableEq α] [Add α] (s t : Set α) [Fintype s] [Fintype t] [Fintype (s + t)] :
                                                                                                    (s + t).toFinset = s.toFinset + t.toFinset
                                                                                                    theorem Set.Finite.toFinset_mul {α : Type u_2} [DecidableEq α] [Mul α] {s t : Set α} (hs : s.Finite) (ht : t.Finite) (hf : (s * t).Finite := ) :
                                                                                                    Set.Finite.toFinset hf = hs.toFinset * ht.toFinset
                                                                                                    theorem Set.Finite.toFinset_add {α : Type u_2} [DecidableEq α] [Add α] {s t : Set α} (hs : s.Finite) (ht : t.Finite) (hf : (s + t).Finite := ) :
                                                                                                    Set.Finite.toFinset hf = hs.toFinset + ht.toFinset
                                                                                                    @[simp]
                                                                                                    theorem Set.toFinset_smul {α : Type u_2} {β : Type u_3} [SMul α β] [DecidableEq β] (s : Set α) (t : Set β) [Fintype s] [Fintype t] [Fintype (s t)] :
                                                                                                    (s t).toFinset = s.toFinset t.toFinset
                                                                                                    @[simp]
                                                                                                    theorem Set.toFinset_vadd {α : Type u_2} {β : Type u_3} [VAdd α β] [DecidableEq β] (s : Set α) (t : Set β) [Fintype s] [Fintype t] [Fintype (s +ᵥ t)] :
                                                                                                    (s +ᵥ t).toFinset = s.toFinset +ᵥ t.toFinset
                                                                                                    theorem Set.Finite.toFinset_smul {α : Type u_2} {β : Type u_3} [SMul α β] [DecidableEq β] {s : Set α} {t : Set β} (hs : s.Finite) (ht : t.Finite) (hf : (s t).Finite := ) :
                                                                                                    Set.Finite.toFinset hf = hs.toFinset ht.toFinset
                                                                                                    theorem Set.Finite.toFinset_vadd {α : Type u_2} {β : Type u_3} [VAdd α β] [DecidableEq β] {s : Set α} {t : Set β} (hs : s.Finite) (ht : t.Finite) (hf : (s +ᵥ t).Finite := ) :
                                                                                                    Set.Finite.toFinset hf = hs.toFinset +ᵥ ht.toFinset
                                                                                                    @[simp]
                                                                                                    theorem Set.toFinset_smul_set {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] (a : α) (s : Set β) [Fintype s] [Fintype (a s)] :
                                                                                                    (a s).toFinset = a s.toFinset
                                                                                                    @[simp]
                                                                                                    theorem Set.toFinset_vadd_set {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] (a : α) (s : Set β) [Fintype s] [Fintype (a +ᵥ s)] :
                                                                                                    (a +ᵥ s).toFinset = a +ᵥ s.toFinset
                                                                                                    theorem Set.Finite.toFinset_smul_set {α : Type u_2} {β : Type u_3} [DecidableEq β] [SMul α β] {a : α} {s : Set β} (hs : s.Finite) (hf : (a s).Finite := ) :
                                                                                                    Set.Finite.toFinset hf = a hs.toFinset
                                                                                                    theorem Set.Finite.toFinset_vadd_set {α : Type u_2} {β : Type u_3} [DecidableEq β] [VAdd α β] {a : α} {s : Set β} (hs : s.Finite) (hf : (a +ᵥ s).Finite := ) :
                                                                                                    Set.Finite.toFinset hf = a +ᵥ hs.toFinset
                                                                                                    @[simp]
                                                                                                    theorem Set.toFinset_vsub {α : Type u_2} {β : Type u_3} [DecidableEq α] [VSub α β] (s t : Set β) [Fintype s] [Fintype t] [Fintype (s -ᵥ t)] :
                                                                                                    (s -ᵥ t).toFinset = s.toFinset -ᵥ t.toFinset
                                                                                                    theorem Set.Finite.toFinset_vsub {α : Type u_2} {β : Type u_3} [DecidableEq α] [VSub α β] {s t : Set β} (hs : s.Finite) (ht : t.Finite) (hf : (s -ᵥ t).Finite := ) :
                                                                                                    Set.Finite.toFinset hf = hs.toFinset -ᵥ ht.toFinset
                                                                                                    instance Nat.decidablePred_mem_vadd_set {s : Set } [DecidablePred fun (x : ) => x s] (a : ) :
                                                                                                    DecidablePred fun (x : ) => x a +ᵥ s
                                                                                                    Equations