Submonoids in a group with zero #
@[simp]
theorem
Submonoid.smul_mem_pointwise_smul_iff₀
{G₀ : Type u_1}
{M : Type u_3}
[Monoid M]
[GroupWithZero G₀]
[MulDistribMulAction G₀ M]
{a : G₀}
(ha : a ≠ 0)
(S : Submonoid M)
(x : M)
:
theorem
Submonoid.mem_pointwise_smul_iff_inv_smul_mem₀
{G₀ : Type u_1}
{M : Type u_3}
[Monoid M]
[GroupWithZero G₀]
[MulDistribMulAction G₀ M]
{a : G₀}
(ha : a ≠ 0)
(S : Submonoid M)
(x : M)
:
theorem
Submonoid.mem_inv_pointwise_smul_iff₀
{G₀ : Type u_1}
{M : Type u_3}
[Monoid M]
[GroupWithZero G₀]
[MulDistribMulAction G₀ M]
{a : G₀}
(ha : a ≠ 0)
(S : Submonoid M)
(x : M)
:
@[simp]
theorem
Submonoid.pointwise_smul_le_pointwise_smul_iff₀
{G₀ : Type u_1}
{M : Type u_3}
[Monoid M]
[GroupWithZero G₀]
[MulDistribMulAction G₀ M]
{a : G₀}
(ha : a ≠ 0)
{S T : Submonoid M}
:
theorem
Submonoid.pointwise_smul_le_iff₀
{G₀ : Type u_1}
{M : Type u_3}
[Monoid M]
[GroupWithZero G₀]
[MulDistribMulAction G₀ M]
{a : G₀}
(ha : a ≠ 0)
{S T : Submonoid M}
:
theorem
Submonoid.le_pointwise_smul_iff₀
{G₀ : Type u_1}
{M : Type u_3}
[Monoid M]
[GroupWithZero G₀]
[MulDistribMulAction G₀ M]
{a : G₀}
(ha : a ≠ 0)
{S T : Submonoid M}
:
def
AddSubmonoid.pointwiseMulAction
{M : Type u_3}
{A : Type u_4}
[Monoid M]
[AddMonoid A]
[DistribMulAction M A]
:
MulAction M (AddSubmonoid A)
The action on an additive submonoid corresponding to applying the action to every element.
This is available as an instance in the Pointwise
locale.
Equations
- AddSubmonoid.pointwiseMulAction = { smul := fun (a : M) (S : AddSubmonoid A) => AddSubmonoid.map ((DistribMulAction.toAddMonoidEnd M A) a) S, one_smul := ⋯, mul_smul := ⋯ }
Instances For
@[simp]
theorem
AddSubmonoid.coe_pointwise_smul
{M : Type u_3}
{A : Type u_4}
[Monoid M]
[AddMonoid A]
[DistribMulAction M A]
(m : M)
(S : AddSubmonoid A)
:
theorem
AddSubmonoid.smul_mem_pointwise_smul
{M : Type u_3}
{A : Type u_4}
[Monoid M]
[AddMonoid A]
[DistribMulAction M A]
(a : A)
(m : M)
(S : AddSubmonoid A)
:
theorem
AddSubmonoid.mem_smul_pointwise_iff_exists
{M : Type u_3}
{A : Type u_4}
[Monoid M]
[AddMonoid A]
[DistribMulAction M A]
(a : A)
(m : M)
(S : AddSubmonoid A)
:
theorem
AddSubmonoid.smul_sup
{M : Type u_3}
{A : Type u_4}
[Monoid M]
[AddMonoid A]
[DistribMulAction M A]
(m : M)
(S T : AddSubmonoid A)
:
theorem
AddSubmonoid.pointwise_isCentralScalar
{M : Type u_3}
{A : Type u_4}
[Monoid M]
[AddMonoid A]
[DistribMulAction M A]
[DistribMulAction Mᵐᵒᵖ A]
[IsCentralScalar M A]
:
IsCentralScalar M (AddSubmonoid A)
@[simp]
theorem
AddSubmonoid.smul_mem_pointwise_smul_iff
{G : Type u_2}
{A : Type u_4}
[AddMonoid A]
[Group G]
[DistribMulAction G A]
{a : G}
{S : AddSubmonoid A}
{x : A}
:
theorem
AddSubmonoid.mem_pointwise_smul_iff_inv_smul_mem
{G : Type u_2}
{A : Type u_4}
[AddMonoid A]
[Group G]
[DistribMulAction G A]
{a : G}
{S : AddSubmonoid A}
{x : A}
:
theorem
AddSubmonoid.mem_inv_pointwise_smul_iff
{G : Type u_2}
{A : Type u_4}
[AddMonoid A]
[Group G]
[DistribMulAction G A]
{a : G}
{S : AddSubmonoid A}
{x : A}
:
@[simp]
theorem
AddSubmonoid.pointwise_smul_le_pointwise_smul_iff
{G : Type u_2}
{A : Type u_4}
[AddMonoid A]
[Group G]
[DistribMulAction G A]
{a : G}
{S T : AddSubmonoid A}
:
theorem
AddSubmonoid.pointwise_smul_le_iff
{G : Type u_2}
{A : Type u_4}
[AddMonoid A]
[Group G]
[DistribMulAction G A]
{a : G}
{S T : AddSubmonoid A}
:
theorem
AddSubmonoid.le_pointwise_smul_iff
{G : Type u_2}
{A : Type u_4}
[AddMonoid A]
[Group G]
[DistribMulAction G A]
{a : G}
{S T : AddSubmonoid A}
:
@[simp]
theorem
AddSubmonoid.smul_mem_pointwise_smul_iff₀
{G₀ : Type u_1}
{A : Type u_4}
[AddMonoid A]
[GroupWithZero G₀]
[DistribMulAction G₀ A]
{a : G₀}
(ha : a ≠ 0)
(S : AddSubmonoid A)
(x : A)
:
theorem
AddSubmonoid.mem_pointwise_smul_iff_inv_smul_mem₀
{G₀ : Type u_1}
{A : Type u_4}
[AddMonoid A]
[GroupWithZero G₀]
[DistribMulAction G₀ A]
{a : G₀}
(ha : a ≠ 0)
(S : AddSubmonoid A)
(x : A)
:
theorem
AddSubmonoid.mem_inv_pointwise_smul_iff₀
{G₀ : Type u_1}
{A : Type u_4}
[AddMonoid A]
[GroupWithZero G₀]
[DistribMulAction G₀ A]
{a : G₀}
(ha : a ≠ 0)
(S : AddSubmonoid A)
(x : A)
:
@[simp]
theorem
AddSubmonoid.pointwise_smul_le_pointwise_smul_iff₀
{G₀ : Type u_1}
{A : Type u_4}
[AddMonoid A]
[GroupWithZero G₀]
[DistribMulAction G₀ A]
{S T : AddSubmonoid A}
{a : G₀}
(ha : a ≠ 0)
:
theorem
AddSubmonoid.pointwise_smul_le_iff₀
{G₀ : Type u_1}
{A : Type u_4}
[AddMonoid A]
[GroupWithZero G₀]
[DistribMulAction G₀ A]
{S T : AddSubmonoid A}
{a : G₀}
(ha : a ≠ 0)
:
theorem
AddSubmonoid.le_pointwise_smul_iff₀
{G₀ : Type u_1}
{A : Type u_4}
[AddMonoid A]
[GroupWithZero G₀]
[DistribMulAction G₀ A]
{S T : AddSubmonoid A}
{a : G₀}
(ha : a ≠ 0)
: