Documentation

Mathlib.Algebra.GroupWithZero.Units.Equiv

Multiplication by a nonzero element in a GroupWithZero is a permutation. #

def unitsEquivNeZero {G₀ : Type u_1} [GroupWithZero G₀] :
G₀ˣ { a : G₀ // a 0 }

In a GroupWithZero G₀, the unit group G₀ˣ is equivalent to the subtype of nonzero elements.

Equations
  • unitsEquivNeZero = { toFun := fun (a : G₀ˣ) => a, , invFun := fun (a : { a : G₀ // a 0 }) => Units.mk0 a , left_inv := , right_inv := }
Instances For
    @[simp]
    theorem unitsEquivNeZero_symm_apply {G₀ : Type u_1} [GroupWithZero G₀] (a : { a : G₀ // a 0 }) :
    unitsEquivNeZero.symm a = Units.mk0 a
    @[simp]
    theorem unitsEquivNeZero_apply_coe {G₀ : Type u_1} [GroupWithZero G₀] (a : G₀ˣ) :
    (unitsEquivNeZero a) = a
    def Equiv.mulLeft₀ {G₀ : Type u_1} [GroupWithZero G₀] (a : G₀) (ha : a 0) :
    Perm G₀

    Left multiplication by a nonzero element in a GroupWithZero is a permutation of the underlying type.

    Equations
    Instances For
      @[simp]
      theorem Equiv.mulLeft₀_apply {G₀ : Type u_1} [GroupWithZero G₀] (a : G₀) (ha : a 0) :
      (Equiv.mulLeft₀ a ha) = fun (x : G₀) => a * x
      @[simp]
      theorem Equiv.mulLeft₀_symm_apply {G₀ : Type u_1} [GroupWithZero G₀] (a : G₀) (ha : a 0) :
      (Equiv.symm (Equiv.mulLeft₀ a ha)) = fun (x : G₀) => a⁻¹ * x
      theorem mulLeft_bijective₀ {G₀ : Type u_1} [GroupWithZero G₀] (a : G₀) (ha : a 0) :
      Function.Bijective fun (x : G₀) => a * x
      def Equiv.mulRight₀ {G₀ : Type u_1} [GroupWithZero G₀] (a : G₀) (ha : a 0) :
      Perm G₀

      Right multiplication by a nonzero element in a GroupWithZero is a permutation of the underlying type.

      Equations
      Instances For
        @[simp]
        theorem Equiv.mulRight₀_apply {G₀ : Type u_1} [GroupWithZero G₀] (a : G₀) (ha : a 0) :
        (Equiv.mulRight₀ a ha) = fun (x : G₀) => x * a
        @[simp]
        theorem Equiv.mulRight₀_symm_apply {G₀ : Type u_1} [GroupWithZero G₀] (a : G₀) (ha : a 0) :
        (Equiv.symm (Equiv.mulRight₀ a ha)) = fun (x : G₀) => x * a⁻¹
        theorem mulRight_bijective₀ {G₀ : Type u_1} [GroupWithZero G₀] (a : G₀) (ha : a 0) :
        Function.Bijective fun (x : G₀) => x * a
        def Equiv.divRight₀ {G₀ : Type u_1} [GroupWithZero G₀] (a : G₀) (ha : a 0) :
        Perm G₀

        Right division by a nonzero element in a GroupWithZero is a permutation of the underlying type.

        Equations
        • Equiv.divRight₀ a ha = { toFun := fun (x : G₀) => x / a, invFun := fun (x : G₀) => x * a, left_inv := , right_inv := }
        Instances For
          @[simp]
          theorem Equiv.divRight₀_apply {G₀ : Type u_1} [GroupWithZero G₀] (a : G₀) (ha : a 0) (x✝ : G₀) :
          (divRight₀ a ha) x✝ = x✝ / a
          @[simp]
          theorem Equiv.divRight₀_symm_apply {G₀ : Type u_1} [GroupWithZero G₀] (a : G₀) (ha : a 0) (x✝ : G₀) :
          (Equiv.symm (divRight₀ a ha)) x✝ = x✝ * a
          def Equiv.divLeft₀ {G₀ : Type u_1} [CommGroupWithZero G₀] (a : G₀) (ha : a 0) :
          Perm G₀

          Left division by a nonzero element in a CommGroupWithZero is a permutation of the underlying type.

          Equations
          • Equiv.divLeft₀ a ha = { toFun := fun (x : G₀) => a / x, invFun := fun (x : G₀) => a / x, left_inv := , right_inv := }
          Instances For
            @[simp]
            theorem Equiv.divLeft₀_apply {G₀ : Type u_1} [CommGroupWithZero G₀] (a : G₀) (ha : a 0) (x✝ : G₀) :
            (divLeft₀ a ha) x✝ = a / x✝
            @[simp]
            theorem Equiv.divLeft₀_symm_apply {G₀ : Type u_1} [CommGroupWithZero G₀] (a : G₀) (ha : a 0) (x✝ : G₀) :
            (Equiv.symm (divLeft₀ a ha)) x✝ = a / x✝