Further lemmas about units in a MonoidWithZero
or a GroupWithZero
. #
theorem
isLocalHom_of_exists_map_ne_one
{M : Type u_1}
{G₀ : Type u_3}
{F : Type u_6}
[Monoid M]
[GroupWithZero G₀]
[FunLike F G₀ M]
[MonoidHomClass F G₀ M]
{f : F}
(hf : ∃ (x : G₀), f x ≠ 1)
:
@[deprecated isLocalHom_of_exists_map_ne_one]
theorem
isLocalRingHom_of_exists_map_ne_one
{M : Type u_1}
{G₀ : Type u_3}
{F : Type u_6}
[Monoid M]
[GroupWithZero G₀]
[FunLike F G₀ M]
[MonoidHomClass F G₀ M]
{f : F}
(hf : ∃ (x : G₀), f x ≠ 1)
:
Alias of isLocalHom_of_exists_map_ne_one
.
instance
instIsLocalHomOfMonoidWithZeroHomClassOfNontrivial
{M₀ : Type u_2}
{G₀ : Type u_3}
{F : Type u_6}
[MonoidWithZero M₀]
[GroupWithZero G₀]
[FunLike F G₀ M₀]
[MonoidWithZeroHomClass F G₀ M₀]
[Nontrivial M₀]
(f : F)
:
Equations
- ⋯ = ⋯
theorem
Commute.div_eq_div_iff
{G₀ : Type u_3}
[GroupWithZero G₀]
{a b c d : G₀}
(hbd : Commute b d)
(hb : b ≠ 0)
(hd : d ≠ 0)
:
The MonoidWithZero
version of div_eq_div_iff_mul_eq_mul
.
theorem
map_ne_zero
{M₀ : Type u_2}
{G₀ : Type u_3}
{F : Type u_6}
[MonoidWithZero M₀]
[GroupWithZero G₀]
[Nontrivial M₀]
[FunLike F G₀ M₀]
[MonoidWithZeroHomClass F G₀ M₀]
(f : F)
{a : G₀}
:
@[simp]
theorem
map_eq_zero
{M₀ : Type u_2}
{G₀ : Type u_3}
{F : Type u_6}
[MonoidWithZero M₀]
[GroupWithZero G₀]
[Nontrivial M₀]
[FunLike F G₀ M₀]
[MonoidWithZeroHomClass F G₀ M₀]
(f : F)
{a : G₀}
:
theorem
eq_on_inv₀
{G₀ : Type u_3}
{M₀' : Type u_4}
{F' : Type u_7}
[GroupWithZero G₀]
[MonoidWithZero M₀']
[FunLike F' G₀ M₀']
{a : G₀}
[MonoidWithZeroHomClass F' G₀ M₀']
(f g : F')
(h : f a = g a)
:
@[simp]
theorem
map_inv₀
{G₀ : Type u_3}
{G₀' : Type u_5}
{F : Type u_6}
[GroupWithZero G₀]
[GroupWithZero G₀']
[FunLike F G₀ G₀']
[MonoidWithZeroHomClass F G₀ G₀']
(f : F)
(a : G₀)
:
A monoid homomorphism between groups with zeros sending 0
to 0
sends a⁻¹
to (f a)⁻¹
.
@[simp]
theorem
map_div₀
{G₀ : Type u_3}
{G₀' : Type u_5}
{F : Type u_6}
[GroupWithZero G₀]
[GroupWithZero G₀']
[FunLike F G₀ G₀']
[MonoidWithZeroHomClass F G₀ G₀']
(f : F)
(a b : G₀)
:
We define the inverse as a MonoidWithZeroHom
by extending the inverse map by zero
on non-units.
Equations
- MonoidWithZero.inverse = { toFun := Ring.inverse, map_zero' := ⋯, map_one' := ⋯, map_mul' := ⋯ }
Instances For
@[simp]
theorem
MonoidWithZero.coe_inverse
{M : Type u_8}
[CommMonoidWithZero M]
:
⇑MonoidWithZero.inverse = Ring.inverse
@[simp]
theorem
MonoidWithZero.inverse_apply
{M : Type u_8}
[CommMonoidWithZero M]
(a : M)
:
MonoidWithZero.inverse a = Ring.inverse a
Inversion on a commutative group with zero, considered as a monoid with zero homomorphism.
Equations
- invMonoidWithZeroHom = { toFun := (↑invMonoidHom).toFun, map_zero' := ⋯, map_one' := ⋯, map_mul' := ⋯ }
Instances For
@[simp]
theorem
map_zpow₀
{F : Type u_8}
{G₀ : Type u_9}
{G₀' : Type u_10}
[GroupWithZero G₀]
[GroupWithZero G₀']
[FunLike F G₀ G₀']
[MonoidWithZeroHomClass F G₀ G₀']
(f : F)
(x : G₀)
(n : ℤ)
:
If a monoid homomorphism f
between two GroupWithZero
s maps 0
to 0
, then it maps x^n
,
n : ℤ
, to (f x)^n
.