Documentation

Mathlib.Algebra.Homology.ComplexShapeSigns

Signs in constructions on homological complexes

In this file, we shall introduce various typeclasses which will allow the construction of the total complex of a bicomplex and of the the monoidal category structure on categories of homological complexes (TODO).

The most important definition is that of TotalComplexShape c₁ c₂ c₁₂ given three complex shapes c₁, c₂, c₁₂: it allows the definition of a total complex functor HomologicalComplex₂ C c₁ c₂ ⥤ HomologicalComplex C c₁₂ (at least when suitable coproducts exist).

In particular, we construct an instance of TotalComplexShape c c c when c : ComplexShape I and I is an additive monoid equipped with a group homomorphism ε' : Multiplicative I → ℤˣ satisfying certain properties (see ComplexShape.TensorSigns).

class TotalComplexShape {I₁ : Type u_1} {I₂ : Type u_2} {I₁₂ : Type u_4} (c₁ : ComplexShape I₁) (c₂ : ComplexShape I₂) (c₁₂ : ComplexShape I₁₂) :
Type (max (max u_1 u_2) u_4)

A total complex shape for three complexes shapes c₁, c₂, c₁₂ on three types I₁, I₂ and I₁₂ consists of the data and properties that will allow the construction of a total complex functor HomologicalComplex₂ C c₁ c₂ ⥤ HomologicalComplex C c₁₂ which sends K to a complex which in degree i₁₂ : I₁₂ consists of the coproduct of the (K.X i₁).X i₂ such that π ⟨i₁, i₂⟩ = i₁₂.

  • π : I₁ × I₂I₁₂

    a map on indices

  • ε₁ : I₁ × I₂ˣ

    the sign of the horizontal differential in the total complex

  • ε₂ : I₁ × I₂ˣ

    the sign of the vertical differential in the total complex

  • rel₁ {i₁ i₁' : I₁} (h : c₁.Rel i₁ i₁') (i₂ : I₂) : c₁₂.Rel (π c₁ c₂ c₁₂ (i₁, i₂)) (π c₁ c₂ c₁₂ (i₁', i₂))
  • rel₂ (i₁ : I₁) {i₂ i₂' : I₂} (h : c₂.Rel i₂ i₂') : c₁₂.Rel (π c₁ c₂ c₁₂ (i₁, i₂)) (π c₁ c₂ c₁₂ (i₁, i₂'))
  • ε₂_ε₁ {i₁ i₁' : I₁} {i₂ i₂' : I₂} (h₁ : c₁.Rel i₁ i₁') (h₂ : c₂.Rel i₂ i₂') : ε₂ c₁ c₂ c₁₂ (i₁, i₂) * ε₁ c₁ c₂ c₁₂ (i₁, i₂') = -ε₁ c₁ c₂ c₁₂ (i₁, i₂) * ε₂ c₁ c₂ c₁₂ (i₁', i₂)
Instances
    @[reducible, inline]
    abbrev ComplexShape.π {I₁ : Type u_1} {I₂ : Type u_2} {I₁₂ : Type u_4} (c₁ : ComplexShape I₁) (c₂ : ComplexShape I₂) (c₁₂ : ComplexShape I₁₂) [TotalComplexShape c₁ c₂ c₁₂] (i : I₁ × I₂) :
    I₁₂

    The map I₁ × I₂ → I₁₂ on indices given by TotalComplexShape c₁ c₂ c₁₂.

    Equations
    Instances For
      @[reducible, inline]
      abbrev ComplexShape.ε₁ {I₁ : Type u_1} {I₂ : Type u_2} {I₁₂ : Type u_4} (c₁ : ComplexShape I₁) (c₂ : ComplexShape I₂) (c₁₂ : ComplexShape I₁₂) [TotalComplexShape c₁ c₂ c₁₂] (i : I₁ × I₂) :

      The sign of the horizontal differential in the total complex.

      Equations
      Instances For
        @[reducible, inline]
        abbrev ComplexShape.ε₂ {I₁ : Type u_1} {I₂ : Type u_2} {I₁₂ : Type u_4} (c₁ : ComplexShape I₁) (c₂ : ComplexShape I₂) (c₁₂ : ComplexShape I₁₂) [TotalComplexShape c₁ c₂ c₁₂] (i : I₁ × I₂) :

        The sign of the vertical differential in the total complex.

        Equations
        Instances For
          theorem ComplexShape.rel_π₁ {I₁ : Type u_1} {I₂ : Type u_2} {I₁₂ : Type u_4} {c₁ : ComplexShape I₁} (c₂ : ComplexShape I₂) (c₁₂ : ComplexShape I₁₂) [TotalComplexShape c₁ c₂ c₁₂] {i₁ i₁' : I₁} (h : c₁.Rel i₁ i₁') (i₂ : I₂) :
          c₁₂.Rel (c₁ c₂ c₁₂ (i₁, i₂)) (c₁ c₂ c₁₂ (i₁', i₂))
          theorem ComplexShape.next_π₁ {I₁ : Type u_1} {I₂ : Type u_2} {I₁₂ : Type u_4} {c₁ : ComplexShape I₁} (c₂ : ComplexShape I₂) (c₁₂ : ComplexShape I₁₂) [TotalComplexShape c₁ c₂ c₁₂] {i₁ i₁' : I₁} (h : c₁.Rel i₁ i₁') (i₂ : I₂) :
          c₁₂.next (c₁ c₂ c₁₂ (i₁, i₂)) = c₁ c₂ c₁₂ (i₁', i₂)
          theorem ComplexShape.prev_π₁ {I₁ : Type u_1} {I₂ : Type u_2} {I₁₂ : Type u_4} {c₁ : ComplexShape I₁} (c₂ : ComplexShape I₂) (c₁₂ : ComplexShape I₁₂) [TotalComplexShape c₁ c₂ c₁₂] {i₁ i₁' : I₁} (h : c₁.Rel i₁ i₁') (i₂ : I₂) :
          c₁₂.prev (c₁ c₂ c₁₂ (i₁', i₂)) = c₁ c₂ c₁₂ (i₁, i₂)
          theorem ComplexShape.rel_π₂ {I₁ : Type u_1} {I₂ : Type u_2} {I₁₂ : Type u_4} (c₁ : ComplexShape I₁) {c₂ : ComplexShape I₂} (c₁₂ : ComplexShape I₁₂) [TotalComplexShape c₁ c₂ c₁₂] (i₁ : I₁) {i₂ i₂' : I₂} (h : c₂.Rel i₂ i₂') :
          c₁₂.Rel (c₁ c₂ c₁₂ (i₁, i₂)) (c₁ c₂ c₁₂ (i₁, i₂'))
          theorem ComplexShape.next_π₂ {I₁ : Type u_1} {I₂ : Type u_2} {I₁₂ : Type u_4} (c₁ : ComplexShape I₁) {c₂ : ComplexShape I₂} (c₁₂ : ComplexShape I₁₂) [TotalComplexShape c₁ c₂ c₁₂] (i₁ : I₁) {i₂ i₂' : I₂} (h : c₂.Rel i₂ i₂') :
          c₁₂.next (c₁ c₂ c₁₂ (i₁, i₂)) = c₁ c₂ c₁₂ (i₁, i₂')
          theorem ComplexShape.prev_π₂ {I₁ : Type u_1} {I₂ : Type u_2} {I₁₂ : Type u_4} (c₁ : ComplexShape I₁) {c₂ : ComplexShape I₂} (c₁₂ : ComplexShape I₁₂) [TotalComplexShape c₁ c₂ c₁₂] (i₁ : I₁) {i₂ i₂' : I₂} (h : c₂.Rel i₂ i₂') :
          c₁₂.prev (c₁ c₂ c₁₂ (i₁, i₂')) = c₁ c₂ c₁₂ (i₁, i₂)
          theorem ComplexShape.ε₂_ε₁ {I₁ : Type u_1} {I₂ : Type u_2} {I₁₂ : Type u_4} {c₁ : ComplexShape I₁} {c₂ : ComplexShape I₂} (c₁₂ : ComplexShape I₁₂) [TotalComplexShape c₁ c₂ c₁₂] {i₁ i₁' : I₁} {i₂ i₂' : I₂} (h₁ : c₁.Rel i₁ i₁') (h₂ : c₂.Rel i₂ i₂') :
          c₁.ε₂ c₂ c₁₂ (i₁, i₂) * c₁.ε₁ c₂ c₁₂ (i₁, i₂') = -c₁.ε₁ c₂ c₁₂ (i₁, i₂) * c₁.ε₂ c₂ c₁₂ (i₁', i₂)
          theorem ComplexShape.ε₁_ε₂ {I₁ : Type u_1} {I₂ : Type u_2} {I₁₂ : Type u_4} {c₁ : ComplexShape I₁} {c₂ : ComplexShape I₂} (c₁₂ : ComplexShape I₁₂) [TotalComplexShape c₁ c₂ c₁₂] {i₁ i₁' : I₁} {i₂ i₂' : I₂} (h₁ : c₁.Rel i₁ i₁') (h₂ : c₂.Rel i₂ i₂') :
          c₁.ε₁ c₂ c₁₂ (i₁, i₂) * c₁.ε₂ c₂ c₁₂ (i₁, i₂) = -c₁.ε₂ c₂ c₁₂ (i₁', i₂) * c₁.ε₁ c₂ c₁₂ (i₁, i₂')
          class ComplexShape.TensorSigns {I : Type u_7} [AddMonoid I] (c : ComplexShape I) :
          Type u_7

          If I is an additive monoid and c : ComplexShape I, c.TensorSigns contains the data of map ε : I → ℤˣ and properties which allows the construction of a TotalComplexShape c c c.

          • the signs which appear in the vertical differential of the total complex

          • rel_add (p q r : I) (hpq : c.Rel p q) : c.Rel (p + r) (q + r)
          • add_rel (p q r : I) (hpq : c.Rel p q) : c.Rel (r + p) (r + q)
          • ε'_succ (p q : I) (hpq : c.Rel p q) : (ε' c) q = -(ε' c) p
          Instances
            @[reducible, inline]
            abbrev ComplexShape.ε {I : Type u_7} [AddMonoid I] (c : ComplexShape I) [c.TensorSigns] (i : I) :

            The signs which appear in the vertical differential of the total complex.

            Equations
            Instances For
              theorem ComplexShape.rel_add {I : Type u_7} [AddMonoid I] (c : ComplexShape I) [c.TensorSigns] {p q : I} (hpq : c.Rel p q) (r : I) :
              c.Rel (p + r) (q + r)
              theorem ComplexShape.add_rel {I : Type u_7} [AddMonoid I] (c : ComplexShape I) [c.TensorSigns] (r : I) {p q : I} (hpq : c.Rel p q) :
              c.Rel (r + p) (r + q)
              @[simp]
              theorem ComplexShape.ε_zero {I : Type u_7} [AddMonoid I] (c : ComplexShape I) [c.TensorSigns] :
              c 0 = 1
              theorem ComplexShape.ε_succ {I : Type u_7} [AddMonoid I] (c : ComplexShape I) [c.TensorSigns] {p q : I} (hpq : c.Rel p q) :
              c q = -c p
              theorem ComplexShape.ε_add {I : Type u_7} [AddMonoid I] (c : ComplexShape I) [c.TensorSigns] (p q : I) :
              c (p + q) = c p * c q
              theorem ComplexShape.next_add {I : Type u_7} [AddMonoid I] (c : ComplexShape I) [c.TensorSigns] (p q : I) (hp : c.Rel p (c.next p)) :
              c.next (p + q) = c.next p + q
              theorem ComplexShape.next_add' {I : Type u_7} [AddMonoid I] (c : ComplexShape I) [c.TensorSigns] (p q : I) (hq : c.Rel q (c.next q)) :
              c.next (p + q) = p + c.next q
              instance ComplexShape.instTotalComplexShape {I : Type u_7} [AddMonoid I] (c : ComplexShape I) [c.TensorSigns] :
              Equations
              • One or more equations did not get rendered due to their size.
              @[simp]
              theorem ComplexShape.instTotalComplexShape_ε₁ {I : Type u_7} [AddMonoid I] (c : ComplexShape I) [c.TensorSigns] (x✝ : I × I) :
              @[simp]
              theorem ComplexShape.instTotalComplexShape_π {I : Type u_7} [AddMonoid I] (c : ComplexShape I) [c.TensorSigns] (x✝ : I × I) :
              TotalComplexShape.π c c c x✝ = match x✝ with | (p, q) => p + q
              @[simp]
              theorem ComplexShape.instTotalComplexShape_ε₂ {I : Type u_7} [AddMonoid I] (c : ComplexShape I) [c.TensorSigns] (x✝ : I × I) :
              TotalComplexShape.ε₂ c c c x✝ = match x✝ with | (p, snd) => c p
              Equations
              • One or more equations did not get rendered due to their size.
              @[simp]
              theorem ComplexShape.ε_down_ℕ (n : ) :
              (down ) n = (-1) ^ n
              instance ComplexShape.instTensorSignsIntUp :
              (up ).TensorSigns
              Equations
              • One or more equations did not get rendered due to their size.
              @[simp]
              theorem ComplexShape.ε_up_ℤ (n : ) :
              (up ) n = n.negOnePow
              class ComplexShape.Associative {I₁ : Type u_1} {I₂ : Type u_2} {I₃ : Type u_3} {I₁₂ : Type u_4} {I₂₃ : Type u_5} {J : Type u_6} (c₁ : ComplexShape I₁) (c₂ : ComplexShape I₂) (c₃ : ComplexShape I₃) (c₁₂ : ComplexShape I₁₂) (c₂₃ : ComplexShape I₂₃) (c : ComplexShape J) [TotalComplexShape c₁ c₂ c₁₂] [TotalComplexShape c₁₂ c₃ c] [TotalComplexShape c₂ c₃ c₂₃] [TotalComplexShape c₁ c₂₃ c] :

              When we have six complex shapes c₁, c₂, c₃, c₁₂, c₂₃, c, and total functors HomologicalComplex₂ C c₁ c₂ ⥤ HomologicalComplex C c₁₂, HomologicalComplex₂ C c₁₂ c₃ ⥤ HomologicalComplex C c, HomologicalComplex₂ C c₂ c₃ ⥤ HomologicalComplex C c₂₃, HomologicalComplex₂ C c₁ c₂₂₃ ⥤ HomologicalComplex C c, we get two ways to compute the total complex of a triple complex in HomologicalComplex₃ C c₁ c₂ c₃, then under this assumption [Associative c₁ c₂ c₃ c₁₂ c₂₃ c], these two complexes canonically identify (without introducing signs).

              • assoc (i₁ : I₁) (i₂ : I₂) (i₃ : I₃) : c₁₂ c₃ c (c₁ c₂ c₁₂ (i₁, i₂), i₃) = c₁ c₂₃ c (i₁, c₂ c₃ c₂₃ (i₂, i₃))
              • ε₁_eq_mul (i₁ : I₁) (i₂ : I₂) (i₃ : I₃) : c₁.ε₁ c₂₃ c (i₁, c₂ c₃ c₂₃ (i₂, i₃)) = c₁₂.ε₁ c₃ c (c₁ c₂ c₁₂ (i₁, i₂), i₃) * c₁.ε₁ c₂ c₁₂ (i₁, i₂)
              • ε₂_ε₁ (i₁ : I₁) (i₂ : I₂) (i₃ : I₃) : c₁.ε₂ c₂₃ c (i₁, c₂ c₃ c₂₃ (i₂, i₃)) * c₂.ε₁ c₃ c₂₃ (i₂, i₃) = c₁₂.ε₁ c₃ c (c₁ c₂ c₁₂ (i₁, i₂), i₃) * c₁.ε₂ c₂ c₁₂ (i₁, i₂)
              • ε₂_eq_mul (i₁ : I₁) (i₂ : I₂) (i₃ : I₃) : c₁₂.ε₂ c₃ c (c₁ c₂ c₁₂ (i₁, i₂), i₃) = c₁.ε₂ c₂₃ c (i₁, c₂ c₃ c₂₃ (i₂, i₃)) * c₂.ε₂ c₃ c₂₃ (i₂, i₃)
              Instances
                theorem ComplexShape.assoc {I₁ : Type u_1} {I₂ : Type u_2} {I₃ : Type u_3} {I₁₂ : Type u_4} {I₂₃ : Type u_5} {J : Type u_6} (c₁ : ComplexShape I₁) (c₂ : ComplexShape I₂) (c₃ : ComplexShape I₃) (c₁₂ : ComplexShape I₁₂) (c₂₃ : ComplexShape I₂₃) (c : ComplexShape J) [TotalComplexShape c₁ c₂ c₁₂] [TotalComplexShape c₁₂ c₃ c] [TotalComplexShape c₂ c₃ c₂₃] [TotalComplexShape c₁ c₂₃ c] [c₁.Associative c₂ c₃ c₁₂ c₂₃ c] (i₁ : I₁) (i₂ : I₂) (i₃ : I₃) :
                c₁₂ c₃ c (c₁ c₂ c₁₂ (i₁, i₂), i₃) = c₁ c₂₃ c (i₁, c₂ c₃ c₂₃ (i₂, i₃))
                theorem ComplexShape.associative_ε₁_eq_mul {I₁ : Type u_1} {I₂ : Type u_2} {I₃ : Type u_3} {I₁₂ : Type u_4} {I₂₃ : Type u_5} {J : Type u_6} (c₁ : ComplexShape I₁) (c₂ : ComplexShape I₂) (c₃ : ComplexShape I₃) (c₁₂ : ComplexShape I₁₂) (c₂₃ : ComplexShape I₂₃) (c : ComplexShape J) [TotalComplexShape c₁ c₂ c₁₂] [TotalComplexShape c₁₂ c₃ c] [TotalComplexShape c₂ c₃ c₂₃] [TotalComplexShape c₁ c₂₃ c] [c₁.Associative c₂ c₃ c₁₂ c₂₃ c] (i₁ : I₁) (i₂ : I₂) (i₃ : I₃) :
                c₁.ε₁ c₂₃ c (i₁, c₂ c₃ c₂₃ (i₂, i₃)) = c₁₂.ε₁ c₃ c (c₁ c₂ c₁₂ (i₁, i₂), i₃) * c₁.ε₁ c₂ c₁₂ (i₁, i₂)
                theorem ComplexShape.associative_ε₂_ε₁ {I₁ : Type u_1} {I₂ : Type u_2} {I₃ : Type u_3} {I₁₂ : Type u_4} {I₂₃ : Type u_5} {J : Type u_6} (c₁ : ComplexShape I₁) (c₂ : ComplexShape I₂) (c₃ : ComplexShape I₃) (c₁₂ : ComplexShape I₁₂) (c₂₃ : ComplexShape I₂₃) (c : ComplexShape J) [TotalComplexShape c₁ c₂ c₁₂] [TotalComplexShape c₁₂ c₃ c] [TotalComplexShape c₂ c₃ c₂₃] [TotalComplexShape c₁ c₂₃ c] [c₁.Associative c₂ c₃ c₁₂ c₂₃ c] (i₁ : I₁) (i₂ : I₂) (i₃ : I₃) :
                c₁.ε₂ c₂₃ c (i₁, c₂ c₃ c₂₃ (i₂, i₃)) * c₂.ε₁ c₃ c₂₃ (i₂, i₃) = c₁₂.ε₁ c₃ c (c₁ c₂ c₁₂ (i₁, i₂), i₃) * c₁.ε₂ c₂ c₁₂ (i₁, i₂)
                theorem ComplexShape.associative_ε₂_eq_mul {I₁ : Type u_1} {I₂ : Type u_2} {I₃ : Type u_3} {I₁₂ : Type u_4} {I₂₃ : Type u_5} {J : Type u_6} (c₁ : ComplexShape I₁) (c₂ : ComplexShape I₂) (c₃ : ComplexShape I₃) (c₁₂ : ComplexShape I₁₂) (c₂₃ : ComplexShape I₂₃) (c : ComplexShape J) [TotalComplexShape c₁ c₂ c₁₂] [TotalComplexShape c₁₂ c₃ c] [TotalComplexShape c₂ c₃ c₂₃] [TotalComplexShape c₁ c₂₃ c] [c₁.Associative c₂ c₃ c₁₂ c₂₃ c] (i₁ : I₁) (i₂ : I₂) (i₃ : I₃) :
                c₁₂.ε₂ c₃ c (c₁ c₂ c₁₂ (i₁, i₂), i₃) = c₁.ε₂ c₂₃ c (i₁, c₂ c₃ c₂₃ (i₂, i₃)) * c₂.ε₂ c₃ c₂₃ (i₂, i₃)
                def ComplexShape.r {I₁ : Type u_1} {I₂ : Type u_2} {I₃ : Type u_3} {I₁₂ : Type u_4} {J : Type u_6} (c₁ : ComplexShape I₁) (c₂ : ComplexShape I₂) (c₃ : ComplexShape I₃) (c₁₂ : ComplexShape I₁₂) (c : ComplexShape J) [TotalComplexShape c₁ c₂ c₁₂] [TotalComplexShape c₁₂ c₃ c] :
                I₁ × I₂ × I₃J

                The map I₁ × I₂ × I₃ → j that is obtained using TotalComplexShape c₁ c₂ c₁₂ and TotalComplexShape c₁₂ c₃ c when c₁ : ComplexShape I₁, c₂ : ComplexShape I₂, c₃ : ComplexShape I₃, c₁₂ : ComplexShape I₁₂ and c : ComplexShape J.

                Equations
                • c₁.r c₂ c₃ c₁₂ c (i₁, i₂, i₃) = c₁₂ c₃ c (c₁ c₂ c₁₂ (i₁, i₂), i₃)
                Instances For
                  @[reducible]
                  def ComplexShape.ρ₁₂ {I₁ : Type u_1} {I₂ : Type u_2} {I₃ : Type u_3} {I₁₂ : Type u_4} {J : Type u_6} (c₁ : ComplexShape I₁) (c₂ : ComplexShape I₂) (c₃ : ComplexShape I₃) (c₁₂ : ComplexShape I₁₂) (c : ComplexShape J) [TotalComplexShape c₁ c₂ c₁₂] [TotalComplexShape c₁₂ c₃ c] :

                  The GradedObject.BifunctorComp₁₂IndexData which arises from complex shapes.

                  Equations
                  • c₁.ρ₁₂ c₂ c₃ c₁₂ c = { I₁₂ := I₁₂, p := c₁ c₂ c₁₂, q := c₁₂ c₃ c, hpq := }
                  Instances For
                    @[reducible]
                    def ComplexShape.ρ₂₃ {I₁ : Type u_1} {I₂ : Type u_2} {I₃ : Type u_3} {I₁₂ : Type u_4} {I₂₃ : Type u_5} {J : Type u_6} (c₁ : ComplexShape I₁) (c₂ : ComplexShape I₂) (c₃ : ComplexShape I₃) (c₁₂ : ComplexShape I₁₂) (c₂₃ : ComplexShape I₂₃) (c : ComplexShape J) [TotalComplexShape c₁ c₂ c₁₂] [TotalComplexShape c₁₂ c₃ c] [TotalComplexShape c₂ c₃ c₂₃] [TotalComplexShape c₁ c₂₃ c] [c₁.Associative c₂ c₃ c₁₂ c₂₃ c] :

                    The GradedObject.BifunctorComp₂₃IndexData which arises from complex shapes.

                    Equations
                    • c₁.ρ₂₃ c₂ c₃ c₁₂ c₂₃ c = { I₂₃ := I₂₃, p := c₂ c₃ c₂₃, q := c₁ c₂₃ c, hpq := }
                    Instances For
                      instance ComplexShape.instAssociative {I : Type u_7} [AddMonoid I] (c : ComplexShape I) [c.TensorSigns] :
                      c.Associative c c c c c
                      class TotalComplexShapeSymmetry {I₁ : Type u_1} {I₂ : Type u_2} {I₁₂ : Type u_4} (c₁ : ComplexShape I₁) (c₂ : ComplexShape I₂) (c₁₂ : ComplexShape I₁₂) [TotalComplexShape c₁ c₂ c₁₂] [TotalComplexShape c₂ c₁ c₁₂] :
                      Type (max u_1 u_2)

                      A total complex shape symmetry contains the data and properties which allow the identification of the two total complex functors HomologicalComplex₂ C c₁ c₂ ⥤ HomologicalComplex C c₁₂ and HomologicalComplex₂ C c₂ c₁ ⥤ HomologicalComplex C c₁₂ via the flip.

                      • symm (i₁ : I₁) (i₂ : I₂) : c₂ c₁ c₁₂ (i₂, i₁) = c₁ c₂ c₁₂ (i₁, i₂)
                      • σ (i₁ : I₁) (i₂ : I₂) : ˣ

                        the signs involved in the symmetry isomorphism of the total complex

                      • σ_ε₁ {i₁ i₁' : I₁} (h₁ : c₁.Rel i₁ i₁') (i₂ : I₂) : σ c₁ c₂ c₁₂ i₁ i₂ * c₁.ε₁ c₂ c₁₂ (i₁, i₂) = c₂.ε₂ c₁ c₁₂ (i₂, i₁) * σ c₁ c₂ c₁₂ i₁' i₂
                      • σ_ε₂ (i₁ : I₁) {i₂ i₂' : I₂} (h₂ : c₂.Rel i₂ i₂') : σ c₁ c₂ c₁₂ i₁ i₂ * c₁.ε₂ c₂ c₁₂ (i₁, i₂) = c₂.ε₁ c₁ c₁₂ (i₂, i₁) * σ c₁ c₂ c₁₂ i₁ i₂'
                      Instances
                        @[reducible, inline]
                        abbrev ComplexShape.σ {I₁ : Type u_1} {I₂ : Type u_2} {I₁₂ : Type u_4} (c₁ : ComplexShape I₁) (c₂ : ComplexShape I₂) (c₁₂ : ComplexShape I₁₂) [TotalComplexShape c₁ c₂ c₁₂] [TotalComplexShape c₂ c₁ c₁₂] [TotalComplexShapeSymmetry c₁ c₂ c₁₂] (i₁ : I₁) (i₂ : I₂) :

                        The signs involved in the symmetry isomorphism of the total complex.

                        Equations
                        Instances For
                          theorem ComplexShape.π_symm {I₁ : Type u_1} {I₂ : Type u_2} {I₁₂ : Type u_4} (c₁ : ComplexShape I₁) (c₂ : ComplexShape I₂) (c₁₂ : ComplexShape I₁₂) [TotalComplexShape c₁ c₂ c₁₂] [TotalComplexShape c₂ c₁ c₁₂] [TotalComplexShapeSymmetry c₁ c₂ c₁₂] (i₁ : I₁) (i₂ : I₂) :
                          c₂ c₁ c₁₂ (i₂, i₁) = c₁ c₂ c₁₂ (i₁, i₂)
                          def ComplexShape.symmetryEquiv {I₁ : Type u_1} {I₂ : Type u_2} {I₁₂ : Type u_4} (c₁ : ComplexShape I₁) (c₂ : ComplexShape I₂) (c₁₂ : ComplexShape I₁₂) [TotalComplexShape c₁ c₂ c₁₂] [TotalComplexShape c₂ c₁ c₁₂] [TotalComplexShapeSymmetry c₁ c₂ c₁₂] (j : I₁₂) :
                          (c₂ c₁ c₁₂ ⁻¹' {j}) (c₁ c₂ c₁₂ ⁻¹' {j})

                          The symmetry bijection (π c₂ c₁ c₁₂ ⁻¹' {j}) ≃ (π c₁ c₂ c₁₂ ⁻¹' {j}).

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            @[simp]
                            theorem ComplexShape.symmetryEquiv_apply_coe {I₁ : Type u_1} {I₂ : Type u_2} {I₁₂ : Type u_4} (c₁ : ComplexShape I₁) (c₂ : ComplexShape I₂) (c₁₂ : ComplexShape I₁₂) [TotalComplexShape c₁ c₂ c₁₂] [TotalComplexShape c₂ c₁ c₁₂] [TotalComplexShapeSymmetry c₁ c₂ c₁₂] (j : I₁₂) (x✝ : (c₂ c₁ c₁₂ ⁻¹' {j})) :
                            ((c₁.symmetryEquiv c₂ c₁₂ j) x✝) = (x✝.1.2, x✝.1.1)
                            @[simp]
                            theorem ComplexShape.symmetryEquiv_symm_apply_coe {I₁ : Type u_1} {I₂ : Type u_2} {I₁₂ : Type u_4} (c₁ : ComplexShape I₁) (c₂ : ComplexShape I₂) (c₁₂ : ComplexShape I₁₂) [TotalComplexShape c₁ c₂ c₁₂] [TotalComplexShape c₂ c₁ c₁₂] [TotalComplexShapeSymmetry c₁ c₂ c₁₂] (j : I₁₂) (x✝ : (c₁ c₂ c₁₂ ⁻¹' {j})) :
                            ((c₁.symmetryEquiv c₂ c₁₂ j).symm x✝) = (x✝.1.2, x✝.1.1)
                            theorem ComplexShape.σ_ε₁ {I₁ : Type u_1} {I₂ : Type u_2} {I₁₂ : Type u_4} {c₁ : ComplexShape I₁} (c₂ : ComplexShape I₂) (c₁₂ : ComplexShape I₁₂) [TotalComplexShape c₁ c₂ c₁₂] [TotalComplexShape c₂ c₁ c₁₂] [TotalComplexShapeSymmetry c₁ c₂ c₁₂] {i₁ i₁' : I₁} (h₁ : c₁.Rel i₁ i₁') (i₂ : I₂) :
                            c₁ c₂ c₁₂ i₁ i₂ * c₁.ε₁ c₂ c₁₂ (i₁, i₂) = c₂.ε₂ c₁ c₁₂ (i₂, i₁) * c₁ c₂ c₁₂ i₁' i₂
                            theorem ComplexShape.σ_ε₂ {I₁ : Type u_1} {I₂ : Type u_2} {I₁₂ : Type u_4} (c₁ : ComplexShape I₁) {c₂ : ComplexShape I₂} (c₁₂ : ComplexShape I₁₂) [TotalComplexShape c₁ c₂ c₁₂] [TotalComplexShape c₂ c₁ c₁₂] [TotalComplexShapeSymmetry c₁ c₂ c₁₂] (i₁ : I₁) {i₂ i₂' : I₂} (h₂ : c₂.Rel i₂ i₂') :
                            c₁ c₂ c₁₂ i₁ i₂ * c₁.ε₂ c₂ c₁₂ (i₁, i₂) = c₂.ε₁ c₁ c₁₂ (i₂, i₁) * c₁ c₂ c₁₂ i₁ i₂'
                            Equations
                            • One or more equations did not get rendered due to their size.
                            def TotalComplexShapeSymmetry.symmetry {I₁ : Type u_1} {I₂ : Type u_2} {I₁₂ : Type u_4} (c₁ : ComplexShape I₁) (c₂ : ComplexShape I₂) (c₁₂ : ComplexShape I₁₂) [TotalComplexShape c₁ c₂ c₁₂] [TotalComplexShape c₂ c₁ c₁₂] [TotalComplexShapeSymmetry c₁ c₂ c₁₂] :
                            TotalComplexShapeSymmetry c₂ c₁ c₁₂

                            The obvious TotalComplexShapeSymmetry c₂ c₁ c₁₂ deduced from a TotalComplexShapeSymmetry c₁ c₂ c₁₂.

                            Equations
                            • TotalComplexShapeSymmetry.symmetry c₁ c₂ c₁₂ = { symm := , σ := fun (i₂ : I₂) (i₁ : I₁) => c₁ c₂ c₁₂ i₁ i₂, σ_ε₁ := , σ_ε₂ := }
                            Instances For
                              class TotalComplexShapeSymmetrySymmetry {I₁ : Type u_1} {I₂ : Type u_2} {I₁₂ : Type u_4} (c₁ : ComplexShape I₁) (c₂ : ComplexShape I₂) (c₁₂ : ComplexShape I₁₂) [TotalComplexShape c₁ c₂ c₁₂] [TotalComplexShape c₂ c₁ c₁₂] [TotalComplexShapeSymmetry c₁ c₂ c₁₂] [TotalComplexShapeSymmetry c₂ c₁ c₁₂] :

                              This typeclass expresses that the signs given by [TotalComplexShapeSymmetry c₁ c₂ c₁₂] and by [TotalComplexShapeSymmetry c₂ c₁ c₁₂] are compatible.

                              • σ_symm (i₁ : I₁) (i₂ : I₂) : c₂ c₁ c₁₂ i₂ i₁ = c₁ c₂ c₁₂ i₁ i₂
                              Instances
                                theorem ComplexShape.σ_symm {I₁ : Type u_1} {I₂ : Type u_2} {I₁₂ : Type u_4} (c₁ : ComplexShape I₁) (c₂ : ComplexShape I₂) (c₁₂ : ComplexShape I₁₂) [TotalComplexShape c₁ c₂ c₁₂] [TotalComplexShape c₂ c₁ c₁₂] [TotalComplexShapeSymmetry c₁ c₂ c₁₂] [TotalComplexShapeSymmetry c₂ c₁ c₁₂] [TotalComplexShapeSymmetrySymmetry c₁ c₂ c₁₂] (i₁ : I₁) (i₂ : I₂) :
                                c₂ c₁ c₁₂ i₂ i₁ = c₁ c₂ c₁₂ i₁ i₂