Ext-modules in linear categories #
In this file, we show that if C is a R-linear abelian category,
then there is a R-module structure on the groups Ext X Y n
for X and Y in C and n : ℕ.
noncomputable instance
CategoryTheory.Abelian.Ext.instModule
{R : Type t}
[Ring R]
{C : Type u}
[Category.{v, u} C]
[Abelian C]
[Linear R C]
[HasExt C]
{X Y : C}
{n : ℕ}
:
noncomputable def
CategoryTheory.Abelian.Ext.homLinearEquiv
{R : Type t}
[Ring R]
{C : Type u}
[Category.{v, u} C]
[Abelian C]
[Linear R C]
[HasExt C]
{X Y : C}
{n : ℕ}
[HasDerivedCategory C]
:
Ext X Y n ≃ₗ[R] ShiftedHom ((DerivedCategory.singleFunctor C 0).obj X) ((DerivedCategory.singleFunctor C 0).obj Y) ↑n
When an instance of [HasDerivedCategory.{w'} C] is available, this is the R-linear
equivalence between Ext.{w} X Y n and a type of morphisms in the derived category
of the R-linear abelian category C.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Abelian.Ext.homLinearEquiv_apply
{R : Type t}
[Ring R]
{C : Type u}
[Category.{v, u} C]
[Abelian C]
[Linear R C]
[HasExt C]
{X Y : C}
{n : ℕ}
[HasDerivedCategory C]
(a✝ : Ext X Y n)
:
@[simp]
theorem
CategoryTheory.Abelian.Ext.homLinearEquiv_symm_apply
{R : Type t}
[Ring R]
{C : Type u}
[Category.{v, u} C]
[Abelian C]
[Linear R C]
[HasExt C]
{X Y : C}
{n : ℕ}
[HasDerivedCategory C]
(a✝ : ShiftedHom ((DerivedCategory.singleFunctor C 0).obj X) ((DerivedCategory.singleFunctor C 0).obj Y) ↑n)
:
noncomputable def
CategoryTheory.Abelian.Ext.linearEquiv₀
{R : Type t}
[Ring R]
{C : Type u}
[Category.{v, u} C]
[Abelian C]
[Linear R C]
[HasExt C]
{X Y : C}
:
The linear equivalence Ext X Y 0 ≃ₜ[R] (X ⟶ Y).
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Abelian.Ext.linearEquiv₀_symm_apply
{R : Type t}
[Ring R]
{C : Type u}
[Category.{v, u} C]
[Abelian C]
[Linear R C]
[HasExt C]
{X Y : C}
(a✝ : X ⟶ Y)
:
@[simp]
theorem
CategoryTheory.Abelian.Ext.mk₀_linearEquiv₀_apply
{R : Type t}
[Ring R]
{C : Type u}
[Category.{v, u} C]
[Abelian C]
[Linear R C]
[HasExt C]
{X Y : C}
(f : Ext X Y 0)
:
noncomputable def
CategoryTheory.Abelian.Ext.bilinearCompOfLinear
{C : Type u}
[Category.{v, u} C]
[Abelian C]
[HasExt C]
(R : Type t)
[CommRing R]
[Linear R C]
(X Y Z : C)
(a b c : ℕ)
(h : a + b = c)
:
The composition of Ext, as a bilinear map.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
@[reducible, inline]
noncomputable abbrev
CategoryTheory.Abelian.Ext.postcompOfLinear
{C : Type u}
[Category.{v, u} C]
[Abelian C]
[HasExt C]
{Y Z : C}
{n : ℕ}
(β : Ext Y Z n)
(R : Type t)
[CommRing R]
[Linear R C]
(X : C)
{a b : ℕ}
(h : a + n = b)
:
The postcomposition Ext X Y a →ₗ[R] Ext X Z b with β : Ext Y Z n when a + n = b.
Equations
- β.postcompOfLinear R X h = (CategoryTheory.Abelian.Ext.bilinearCompOfLinear R X Y Z a n b h).flip β
Instances For
@[reducible, inline]
noncomputable abbrev
CategoryTheory.Abelian.Ext.precompOfLinear
{C : Type u}
[Category.{v, u} C]
[Abelian C]
[HasExt C]
{X Y : C}
{n : ℕ}
(α : Ext X Y n)
(R : Type t)
[CommRing R]
[Linear R C]
(Z : C)
{a b : ℕ}
(h : n + a = b)
:
The precomposition Ext Y Z a →ₗ[R] Ext X Z b with α : Ext X Y n when n + a = b.
Equations
- α.precompOfLinear R Z h = (CategoryTheory.Abelian.Ext.bilinearCompOfLinear R X Y Z n a b h) α