Documentation

Mathlib.Algebra.Homology.DerivedCategory.Ext.Linear

Ext-modules in linear categories #

In this file, we show that if C is a R-linear abelian category, then there is a R-module structure on the groups Ext X Y n for X and Y in C and n : ℕ.

theorem CategoryTheory.Abelian.Ext.smul_eq_comp_mk₀ {R : Type t} [Ring R] {C : Type u} [Category.{v, u} C] [Abelian C] [Linear R C] [HasExt C] {X Y : C} {n : } (x : Ext X Y n) (r : R) :
r x = x.comp (mk₀ (r CategoryStruct.id Y))
@[simp]
theorem CategoryTheory.Abelian.Ext.smul_hom {R : Type t} [Ring R] {C : Type u} [Category.{v, u} C] [Abelian C] [Linear R C] [HasExt C] {X Y : C} {n : } (x : Ext X Y n) (r : R) [HasDerivedCategory C] :
(r x).hom = r x.hom
@[simp]
theorem CategoryTheory.Abelian.Ext.comp_smul {R : Type t} [Ring R] {C : Type u} [Category.{v, u} C] [Abelian C] [Linear R C] [HasExt C] {X Y Z : C} {a b : } (α : Ext X Y a) (β : Ext Y Z b) {c : } (h : a + b = c) (r : R) :
α.comp (r β) h = r α.comp β h
@[simp]
theorem CategoryTheory.Abelian.Ext.smul_comp {R : Type t} [Ring R] {C : Type u} [Category.{v, u} C] [Abelian C] [Linear R C] [HasExt C] {X Y Z : C} {a b : } (α : Ext X Y a) (β : Ext Y Z b) {c : } (h : a + b = c) (r : R) :
(r α).comp β h = r α.comp β h

When an instance of [HasDerivedCategory.{w'} C] is available, this is the R-linear equivalence between Ext.{w} X Y n and a type of morphisms in the derived category of the R-linear abelian category C.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem CategoryTheory.Abelian.Ext.homLinearEquiv_apply {R : Type t} [Ring R] {C : Type u} [Category.{v, u} C] [Abelian C] [Linear R C] [HasExt C] {X Y : C} {n : } [HasDerivedCategory C] (a✝ : Ext X Y n) :
    theorem CategoryTheory.Abelian.Ext.mk₀_smul {R : Type t} [Ring R] {C : Type u} [Category.{v, u} C] [Abelian C] [Linear R C] [HasExt C] {X Y : C} (r : R) (f : X Y) :
    mk₀ (r f) = r mk₀ f
    noncomputable def CategoryTheory.Abelian.Ext.linearEquiv₀ {R : Type t} [Ring R] {C : Type u} [Category.{v, u} C] [Abelian C] [Linear R C] [HasExt C] {X Y : C} :
    Ext X Y 0 ≃ₗ[R] X Y

    The linear equivalence Ext X Y 0 ≃ₜ[R] (X ⟶ Y).

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem CategoryTheory.Abelian.Ext.linearEquiv₀_symm_apply {R : Type t} [Ring R] {C : Type u} [Category.{v, u} C] [Abelian C] [Linear R C] [HasExt C] {X Y : C} (a✝ : X Y) :
      @[simp]
      theorem CategoryTheory.Abelian.Ext.mk₀_linearEquiv₀_apply {R : Type t} [Ring R] {C : Type u} [Category.{v, u} C] [Abelian C] [Linear R C] [HasExt C] {X Y : C} (f : Ext X Y 0) :
      noncomputable def CategoryTheory.Abelian.Ext.bilinearCompOfLinear {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] (R : Type t) [CommRing R] [Linear R C] (X Y Z : C) (a b c : ) (h : a + b = c) :
      Ext X Y a →ₗ[R] Ext Y Z b →ₗ[R] Ext X Z c

      The composition of Ext, as a bilinear map.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem CategoryTheory.Abelian.Ext.bilinearCompOfLinear_apply_apply {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] (R : Type t) [CommRing R] [Linear R C] (X Y Z : C) (a b c : ) (h : a + b = c) (α : Ext X Y a) (β : Ext Y Z b) :
        ((bilinearCompOfLinear R X Y Z a b c h) α) β = α.comp β h
        @[reducible, inline]
        noncomputable abbrev CategoryTheory.Abelian.Ext.postcompOfLinear {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] {Y Z : C} {n : } (β : Ext Y Z n) (R : Type t) [CommRing R] [Linear R C] (X : C) {a b : } (h : a + n = b) :
        Ext X Y a →ₗ[R] Ext X Z b

        The postcomposition Ext X Y a →ₗ[R] Ext X Z b with β : Ext Y Z n when a + n = b.

        Equations
        Instances For
          @[reducible, inline]
          noncomputable abbrev CategoryTheory.Abelian.Ext.precompOfLinear {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] {X Y : C} {n : } (α : Ext X Y n) (R : Type t) [CommRing R] [Linear R C] (Z : C) {a b : } (h : n + a = b) :
          Ext Y Z a →ₗ[R] Ext X Z b

          The precomposition Ext Y Z a →ₗ[R] Ext X Z b with α : Ext X Y n when n + a = b.

          Equations
          Instances For