The derived category of a linear abelian category is linear #
noncomputable instance
DerivedCategory.instLinear
(R : Type w)
[Ring R]
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[CategoryTheory.Linear R C]
[HasDerivedCategory C]
:
instance
DerivedCategory.instLinearHomotopyCategoryIntUpQh
(R : Type w)
[Ring R]
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[CategoryTheory.Linear R C]
[HasDerivedCategory C]
:
instance
DerivedCategory.instLinearCochainComplexIntQ
(R : Type w)
[Ring R]
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[CategoryTheory.Linear R C]
[HasDerivedCategory C]
:
instance
DerivedCategory.instLinearShiftFunctorInt
(R : Type w)
[Ring R]
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[CategoryTheory.Linear R C]
[HasDerivedCategory C]
(n : ℤ)
:
instance
DerivedCategory.instLinearSingleFunctor
(R : Type w)
[Ring R]
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[CategoryTheory.Linear R C]
[HasDerivedCategory C]
(n : ℤ)
: