The category of homological complexes is linear #
In this file, we define the instance Linear R (HomologicalComplex C c)
when the
category C
is R
-linear.
TODO #
- show lemmas like
HomologicalComplex.homologyMap_smul
(after doing the same for short complexes inMathlib.Algebra.Homology.ShortComplex.Linear
)
instance
HomologicalComplex.instSMulHom
{R : Type u_1}
[Semiring R]
{C : Type u_2}
[CategoryTheory.Category.{u_5, u_2} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Linear R C]
{ι : Type u_4}
{c : ComplexShape ι}
{X Y : HomologicalComplex C c}
:
Equations
- HomologicalComplex.instSMulHom = { smul := fun (r : R) (f : X ⟶ Y) => { f := fun (n : ι) => r • f.f n, comm' := ⋯ } }
@[simp]
theorem
HomologicalComplex.smul_f_apply
{R : Type u_1}
[Semiring R]
{C : Type u_2}
[CategoryTheory.Category.{u_5, u_2} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Linear R C]
{ι : Type u_4}
{c : ComplexShape ι}
{X Y : HomologicalComplex C c}
(r : R)
(f : X ⟶ Y)
(n : ι)
:
@[simp]
theorem
HomologicalComplex.units_smul_f_apply
{R : Type u_1}
[Semiring R]
{C : Type u_2}
[CategoryTheory.Category.{u_5, u_2} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Linear R C]
{ι : Type u_4}
{c : ComplexShape ι}
{X Y : HomologicalComplex C c}
(r : Rˣ)
(f : X ⟶ Y)
(n : ι)
:
instance
HomologicalComplex.instModuleHom
{R : Type u_1}
[Semiring R]
{C : Type u_2}
[CategoryTheory.Category.{u_5, u_2} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Linear R C]
{ι : Type u_4}
{c : ComplexShape ι}
(X Y : HomologicalComplex C c)
:
instance
HomologicalComplex.instLinear
{R : Type u_1}
[Semiring R]
{C : Type u_2}
[CategoryTheory.Category.{u_5, u_2} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Linear R C]
{ι : Type u_4}
{c : ComplexShape ι}
:
Equations
- HomologicalComplex.instLinear = { homModule := inferInstance, smul_comp := ⋯, comp_smul := ⋯ }
instance
CategoryTheory.Functor.mapHomologicalComplex_linear
{R : Type u_1}
[Semiring R]
{C : Type u_2}
{D : Type u_3}
[Category.{u_5, u_2} C]
[Preadditive C]
[Category.{u_6, u_3} D]
[Preadditive D]
[CategoryTheory.Linear R C]
[CategoryTheory.Linear R D]
{ι : Type u_4}
(F : Functor C D)
[F.Additive]
[Linear R F]
(c : ComplexShape ι)
:
Linear R (F.mapHomologicalComplex c)