Documentation

Mathlib.Algebra.Homology.Linear

The category of homological complexes is linear #

In this file, we define the instance Linear R (HomologicalComplex C c) when the category C is R-linear.

TODO #

Equations
  • HomologicalComplex.instSMulHom = { smul := fun (r : R) (f : X Y) => { f := fun (n : ι) => r f.f n, comm' := } }
@[simp]
theorem HomologicalComplex.smul_f_apply {R : Type u_1} [Semiring R] {C : Type u_2} [CategoryTheory.Category.{u_5, u_2} C] [CategoryTheory.Preadditive C] [CategoryTheory.Linear R C] {ι : Type u_4} {c : ComplexShape ι} {X Y : HomologicalComplex C c} (r : R) (f : X Y) (n : ι) :
(r f).f n = r f.f n
@[simp]
theorem HomologicalComplex.units_smul_f_apply {R : Type u_1} [Semiring R] {C : Type u_2} [CategoryTheory.Category.{u_5, u_2} C] [CategoryTheory.Preadditive C] [CategoryTheory.Linear R C] {ι : Type u_4} {c : ComplexShape ι} {X Y : HomologicalComplex C c} (r : Rˣ) (f : X Y) (n : ι) :
(r f).f n = r f.f n
Equations
Equations
  • HomologicalComplex.instLinear = { homModule := inferInstance, smul_comp := , comp_smul := }