Documentation

Mathlib.Algebra.Homology.Linear

The category of homological complexes is linear #

In this file, we define the instance Linear R (HomologicalComplex C c) when the category C is R-linear.

TODO #

Equations
@[simp]
theorem HomologicalComplex.smul_f_apply {R : Type u_1} [Semiring R] {C : Type u_2} [CategoryTheory.Category.{u_5, u_2} C] [CategoryTheory.Preadditive C] [CategoryTheory.Linear R C] {ι : Type u_4} {c : ComplexShape ι} {X Y : HomologicalComplex C c} (r : R) (f : X Y) (n : ι) :
(r f).f n = r f.f n
@[simp]
theorem HomologicalComplex.units_smul_f_apply {R : Type u_1} [Semiring R] {C : Type u_2} [CategoryTheory.Category.{u_5, u_2} C] [CategoryTheory.Preadditive C] [CategoryTheory.Linear R C] {ι : Type u_4} {c : ComplexShape ι} {X Y : HomologicalComplex C c} (r : Rˣ) (f : X Y) (n : ι) :
(r f).f n = r f.f n
Equations
instance CategoryTheory.Functor.mapHomologicalComplex_linear {R : Type u_1} [Semiring R] {C : Type u_2} {D : Type u_3} [Category.{u_5, u_2} C] [Preadditive C] [Category.{u_6, u_3} D] [Preadditive D] [CategoryTheory.Linear R C] [CategoryTheory.Linear R D] {ι : Type u_4} (F : Functor C D) [F.Additive] [Linear R F] (c : ComplexShape ι) :
Linear R (F.mapHomologicalComplex c)