Documentation

Mathlib.Algebra.Homology.Additive

Homology is an additive functor #

When V is preadditive, HomologicalComplex V c is also preadditive, and homologyFunctor is additive.

Equations
  • HomologicalComplex.instZeroHomHomologicalComplexPreadditiveHasZeroMorphismsToQuiverToCategoryStructInstCategoryHomologicalComplex = { zero := { f := fun (i : ι) => 0, comm' := } }
Equations
  • HomologicalComplex.hasNatScalar = { smul := fun (n : ) (f : C D) => { f := fun (i : ι) => n f.f i, comm' := } }
Equations
  • HomologicalComplex.hasIntScalar = { smul := fun (n : ) (f : C D) => { f := fun (i : ι) => n f.f i, comm' := } }
@[simp]
theorem HomologicalComplex.add_f_apply {ι : Type u_1} {V : Type u} [CategoryTheory.Category.{v, u} V] [CategoryTheory.Preadditive V] {c : ComplexShape ι} {C : HomologicalComplex V c} {D : HomologicalComplex V c} (f : C D) (g : C D) (i : ι) :
(f + g).f i = f.f i + g.f i
@[simp]
theorem HomologicalComplex.neg_f_apply {ι : Type u_1} {V : Type u} [CategoryTheory.Category.{v, u} V] [CategoryTheory.Preadditive V] {c : ComplexShape ι} {C : HomologicalComplex V c} {D : HomologicalComplex V c} (f : C D) (i : ι) :
(-f).f i = -f.f i
@[simp]
theorem HomologicalComplex.sub_f_apply {ι : Type u_1} {V : Type u} [CategoryTheory.Category.{v, u} V] [CategoryTheory.Preadditive V] {c : ComplexShape ι} {C : HomologicalComplex V c} {D : HomologicalComplex V c} (f : C D) (g : C D) (i : ι) :
(f - g).f i = f.f i - g.f i
@[simp]
theorem HomologicalComplex.nsmul_f_apply {ι : Type u_1} {V : Type u} [CategoryTheory.Category.{v, u} V] [CategoryTheory.Preadditive V] {c : ComplexShape ι} {C : HomologicalComplex V c} {D : HomologicalComplex V c} (n : ) (f : C D) (i : ι) :
(n f).f i = n f.f i
@[simp]
theorem HomologicalComplex.zsmul_f_apply {ι : Type u_1} {V : Type u} [CategoryTheory.Category.{v, u} V] [CategoryTheory.Preadditive V] {c : ComplexShape ι} {C : HomologicalComplex V c} {D : HomologicalComplex V c} (n : ) (f : C D) (i : ι) :
(n f).f i = n f.f i
Equations
  • HomologicalComplex.instPreadditiveHomologicalComplexPreadditiveHasZeroMorphismsInstCategoryHomologicalComplex = { homGroup := inferInstance, add_comp := , comp_add := }
def HomologicalComplex.Hom.fAddMonoidHom {ι : Type u_1} {V : Type u} [CategoryTheory.Category.{v, u} V] [CategoryTheory.Preadditive V] {c : ComplexShape ι} {C₁ : HomologicalComplex V c} {C₂ : HomologicalComplex V c} (i : ι) :
(C₁ C₂) →+ (C₁.X i C₂.X i)

The i-th component of a chain map, as an additive map from chain maps to morphisms.

Equations
Instances For

    An additive functor induces a functor between homological complexes. This is sometimes called the "prolongation".

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      The functor on homological complexes induced by the identity functor is isomorphic to the identity functor.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        A natural transformation between functors induces a natural transformation between those functors applied to homological complexes.

        Equations
        Instances For

          A natural isomorphism between functors induces a natural isomorphism between those functors applied to homological complexes.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            An equivalence of categories induces an equivalences between the respective categories of homological complex.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem ChainComplex.map_chain_complex_of {W₁ : Type u_3} {W₂ : Type u_4} [CategoryTheory.Category.{u_6, u_3} W₁] [CategoryTheory.Category.{u_7, u_4} W₂] [CategoryTheory.Limits.HasZeroMorphisms W₁] [CategoryTheory.Limits.HasZeroMorphisms W₂] {α : Type u_5} [AddRightCancelSemigroup α] [One α] [DecidableEq α] (F : CategoryTheory.Functor W₁ W₂) [CategoryTheory.Functor.PreservesZeroMorphisms F] (X : αW₁) (d : (n : α) → X (n + 1) X n) (sq : ∀ (n : α), CategoryTheory.CategoryStruct.comp (d (n + 1)) (d n) = 0) :
              (CategoryTheory.Functor.mapHomologicalComplex F (ComplexShape.down α)).obj (ChainComplex.of X d sq) = ChainComplex.of (fun (n : α) => F.obj (X n)) (fun (n : α) => F.map (d n))

              Turning an object into a complex supported at j then applying a functor is the same as applying the functor then forming the complex.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For