Documentation

Mathlib.Algebra.Homology.Localization

The category of homological complexes up to quasi-isomorphisms

Given a category C with homology and any complex shape c, we define the category HomologicalComplexUpToQuasiIso C c which is the localized category of HomologicalComplex C c with respect to quasi-isomorphisms. When C is abelian, this will be the derived category of C in the particular case of the complex shape ComplexShape.up.

Under suitable assumptions on c (e.g. chain complexes, or cochain complexes indexed by ), we shall show that HomologicalComplexUpToQuasiIso C c is also the localized category of HomotopyCategory C c with respect to the class of quasi-isomorphisms.

@[reducible, inline]

The category of homological complexes up to quasi-isomorphisms.

Equations
Instances For

    The condition on a complex shape c saying that homotopic maps become equal in the localized category with respect to quasi-isomorphisms.

    Instances
      theorem HomologicalComplexUpToQuasiIso.Q_map_eq_of_homotopy {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {ι : Type u_2} {c : ComplexShape ι} [CategoryTheory.Preadditive C] [CategoryTheory.CategoryWithHomology C] [(HomologicalComplex.quasiIso C c).HasLocalization] [c.QFactorsThroughHomotopy C] {K L : HomologicalComplex C c} {f g : K L} (h : Homotopy f g) :
      HomologicalComplexUpToQuasiIso.Q.map f = HomologicalComplexUpToQuasiIso.Q.map g

      The functor HomotopyCategory C c ⥤ HomologicalComplexUpToQuasiIso C c from the homotopy category to the localized category with respect to quasi-isomorphisms.

      Equations
      Instances For
        def HomologicalComplexUpToQuasiIso.quotientCompQhIso (C : Type u_1) [CategoryTheory.Category.{u_3, u_1} C] {ι : Type u_2} (c : ComplexShape ι) [CategoryTheory.Preadditive C] [CategoryTheory.CategoryWithHomology C] [(HomologicalComplex.quasiIso C c).HasLocalization] [c.QFactorsThroughHomotopy C] :
        (HomotopyCategory.quotient C c).comp HomologicalComplexUpToQuasiIso.Qh HomologicalComplexUpToQuasiIso.Q

        The canonical isomorphism HomotopyCategory.quotient C c ⋙ QhQ.

        Equations
        Instances For
          theorem HomologicalComplexUpToQuasiIso.Qh_inverts_quasiIso (C : Type u_1) [CategoryTheory.Category.{u_3, u_1} C] {ι : Type u_2} (c : ComplexShape ι) [CategoryTheory.Preadditive C] [CategoryTheory.CategoryWithHomology C] [(HomologicalComplex.quasiIso C c).HasLocalization] [c.QFactorsThroughHomotopy C] :
          (HomotopyCategory.quasiIso C c).IsInvertedBy HomologicalComplexUpToQuasiIso.Qh
          noncomputable def HomologicalComplexUpToQuasiIso.homologyFunctorFactorsh (C : Type u_1) [CategoryTheory.Category.{u_3, u_1} C] {ι : Type u_2} (c : ComplexShape ι) [CategoryTheory.Preadditive C] [CategoryTheory.CategoryWithHomology C] [(HomologicalComplex.quasiIso C c).HasLocalization] [c.QFactorsThroughHomotopy C] (i : ι) :
          HomologicalComplexUpToQuasiIso.Qh.comp (HomologicalComplexUpToQuasiIso.homologyFunctor C c i) HomotopyCategory.homologyFunctor C c i

          The homology functor on HomologicalComplexUpToQuasiIso C c is induced by the homology functor on HomotopyCategory C c.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            The category HomologicalComplexUpToQuasiIso C c which was defined as a localization of HomologicalComplex C c with respect to quasi-isomorphisms also identify to a localization of the homotopy category with respect ot quasi-isomorphisms.

            Equations
            • =

            The homotopy category satisfies the universal property of the localized category with respect to homotopy equivalences.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              The localizer morphism which expresses that F.mapHomologicalComplex c preserves quasi-isomorphisms.

              Equations
              • F.mapHomologicalComplexUpToQuasiIsoLocalizerMorphism c = { functor := F.mapHomologicalComplex c, map := }
              Instances For
                @[simp]
                theorem CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoLocalizerMorphism_functor {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_5, u_2} D] (F : CategoryTheory.Functor C D) {ι : Type u_3} (c : ComplexShape ι) [CategoryTheory.Preadditive C] [CategoryTheory.Preadditive D] [CategoryTheory.CategoryWithHomology C] [CategoryTheory.CategoryWithHomology D] [F.Additive] [F.PreservesHomology] :
                (F.mapHomologicalComplexUpToQuasiIsoLocalizerMorphism c).functor = F.mapHomologicalComplex c

                The functor HomologicalComplexUpToQuasiIso C c ⥤ HomologicalComplexUpToQuasiIso D c induced by a functor F : C ⥤ D which preserves homology.

                Equations
                • F.mapHomologicalComplexUpToQuasiIso c = (F.mapHomologicalComplexUpToQuasiIsoLocalizerMorphism c).localizedFunctor HomologicalComplexUpToQuasiIso.Q HomologicalComplexUpToQuasiIso.Q
                Instances For
                  noncomputable instance CategoryTheory.Functor.instLiftingHomologicalComplexHomologicalComplexUpToQuasiIsoQQuasiIsoCompMapHomologicalComplexMapHomologicalComplexUpToQuasiIso {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_5, u_2} D] (F : CategoryTheory.Functor C D) {ι : Type u_3} (c : ComplexShape ι) [CategoryTheory.Preadditive C] [CategoryTheory.Preadditive D] [CategoryTheory.CategoryWithHomology C] [CategoryTheory.CategoryWithHomology D] [(HomologicalComplex.quasiIso D c).HasLocalization] [F.Additive] [F.PreservesHomology] [(HomologicalComplex.quasiIso C c).HasLocalization] :
                  CategoryTheory.Localization.Lifting HomologicalComplexUpToQuasiIso.Q (HomologicalComplex.quasiIso C c) ((F.mapHomologicalComplex c).comp HomologicalComplexUpToQuasiIso.Q) (F.mapHomologicalComplexUpToQuasiIso c)
                  Equations
                  • One or more equations did not get rendered due to their size.
                  noncomputable def CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactors {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_5, u_2} D] (F : CategoryTheory.Functor C D) {ι : Type u_3} (c : ComplexShape ι) [CategoryTheory.Preadditive C] [CategoryTheory.Preadditive D] [CategoryTheory.CategoryWithHomology C] [CategoryTheory.CategoryWithHomology D] [(HomologicalComplex.quasiIso D c).HasLocalization] [F.Additive] [F.PreservesHomology] [(HomologicalComplex.quasiIso C c).HasLocalization] :
                  HomologicalComplexUpToQuasiIso.Q.comp (F.mapHomologicalComplexUpToQuasiIso c) (F.mapHomologicalComplex c).comp HomologicalComplexUpToQuasiIso.Q

                  The functor F.mapHomologicalComplexUpToQuasiIso c is induced by F.mapHomologicalComplex c.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    noncomputable def CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactorsh {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_5, u_2} D] (F : CategoryTheory.Functor C D) {ι : Type u_3} (c : ComplexShape ι) [CategoryTheory.Preadditive C] [CategoryTheory.Preadditive D] [CategoryTheory.CategoryWithHomology C] [CategoryTheory.CategoryWithHomology D] [(HomologicalComplex.quasiIso D c).HasLocalization] [F.Additive] [F.PreservesHomology] [(HomologicalComplex.quasiIso C c).HasLocalization] [c.QFactorsThroughHomotopy C] [c.QFactorsThroughHomotopy D] [(HomotopyCategory.quotient C c).IsLocalization (HomologicalComplex.homotopyEquivalences C c)] :
                    HomologicalComplexUpToQuasiIso.Qh.comp (F.mapHomologicalComplexUpToQuasiIso c) (F.mapHomotopyCategory c).comp HomologicalComplexUpToQuasiIso.Qh

                    The functor F.mapHomologicalComplexUpToQuasiIso c is induced by F.mapHomotopyCategory c.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      noncomputable instance CategoryTheory.Functor.instLiftingHomotopyCategoryHomologicalComplexUpToQuasiIsoQhQuasiIsoCompMapHomotopyCategoryMapHomologicalComplexUpToQuasiIso {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_5, u_2} D] (F : CategoryTheory.Functor C D) {ι : Type u_3} (c : ComplexShape ι) [CategoryTheory.Preadditive C] [CategoryTheory.Preadditive D] [CategoryTheory.CategoryWithHomology C] [CategoryTheory.CategoryWithHomology D] [(HomologicalComplex.quasiIso D c).HasLocalization] [F.Additive] [F.PreservesHomology] [(HomologicalComplex.quasiIso C c).HasLocalization] [c.QFactorsThroughHomotopy C] [c.QFactorsThroughHomotopy D] [(HomotopyCategory.quotient C c).IsLocalization (HomologicalComplex.homotopyEquivalences C c)] :
                      CategoryTheory.Localization.Lifting HomologicalComplexUpToQuasiIso.Qh (HomotopyCategory.quasiIso C c) ((F.mapHomotopyCategory c).comp HomologicalComplexUpToQuasiIso.Qh) (F.mapHomologicalComplexUpToQuasiIso c)
                      Equations
                      • F.instLiftingHomotopyCategoryHomologicalComplexUpToQuasiIsoQhQuasiIsoCompMapHomotopyCategoryMapHomologicalComplexUpToQuasiIso c = { iso' := F.mapHomologicalComplexUpToQuasiIsoFactorsh c }
                      theorem CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_6, u_2} D] (F : CategoryTheory.Functor C D) {ι : Type u_3} {c : ComplexShape ι} [CategoryTheory.Preadditive C] [CategoryTheory.Preadditive D] [CategoryTheory.CategoryWithHomology C] [CategoryTheory.CategoryWithHomology D] [(HomologicalComplex.quasiIso D c).HasLocalization] [F.Additive] [F.PreservesHomology] [(HomologicalComplex.quasiIso C c).HasLocalization] [c.QFactorsThroughHomotopy C] [c.QFactorsThroughHomotopy D] [(HomotopyCategory.quotient C c).IsLocalization (HomologicalComplex.homotopyEquivalences C c)] (K : HomologicalComplex C c) :
                      (F.mapHomologicalComplexUpToQuasiIsoFactorsh c).hom.app ((HomotopyCategory.quotient C c).obj K) = CategoryTheory.CategoryStruct.comp ((F.mapHomologicalComplexUpToQuasiIso c).map ((HomologicalComplexUpToQuasiIso.quotientCompQhIso C c).hom.app K)) (CategoryTheory.CategoryStruct.comp ((F.mapHomologicalComplexUpToQuasiIsoFactors c).hom.app K) (CategoryTheory.CategoryStruct.comp ((HomologicalComplexUpToQuasiIso.quotientCompQhIso D c).inv.app ((F.mapHomologicalComplex c).obj K)) (HomologicalComplexUpToQuasiIso.Qh.map ((F.mapHomotopyCategoryFactors c).inv.app K))))
                      theorem CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app_assoc {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_6, u_2} D] (F : CategoryTheory.Functor C D) {ι : Type u_3} {c : ComplexShape ι} [CategoryTheory.Preadditive C] [CategoryTheory.Preadditive D] [CategoryTheory.CategoryWithHomology C] [CategoryTheory.CategoryWithHomology D] [(HomologicalComplex.quasiIso D c).HasLocalization] [F.Additive] [F.PreservesHomology] [(HomologicalComplex.quasiIso C c).HasLocalization] [c.QFactorsThroughHomotopy C] [c.QFactorsThroughHomotopy D] [(HomotopyCategory.quotient C c).IsLocalization (HomologicalComplex.homotopyEquivalences C c)] (K : HomologicalComplex C c) {Z : HomologicalComplexUpToQuasiIso D c} (h : HomologicalComplexUpToQuasiIso.Qh.obj ((F.mapHomotopyCategory c).obj ((HomotopyCategory.quotient C c).obj K)) Z) :
                      CategoryTheory.CategoryStruct.comp ((F.mapHomologicalComplexUpToQuasiIsoFactorsh c).hom.app ((HomotopyCategory.quotient C c).obj K)) h = CategoryTheory.CategoryStruct.comp ((F.mapHomologicalComplexUpToQuasiIso c).map ((HomologicalComplexUpToQuasiIso.quotientCompQhIso C c).hom.app K)) (CategoryTheory.CategoryStruct.comp ((F.mapHomologicalComplexUpToQuasiIsoFactors c).hom.app K) (CategoryTheory.CategoryStruct.comp ((HomologicalComplexUpToQuasiIso.quotientCompQhIso D c).inv.app ((F.mapHomologicalComplex c).obj K)) (CategoryTheory.CategoryStruct.comp (HomologicalComplexUpToQuasiIso.Qh.map ((F.mapHomotopyCategoryFactors c).inv.app K)) h)))