Documentation

Mathlib.CategoryTheory.Quotient

Quotient category #

Constructs the quotient of a category by an arbitrary family of relations on its hom-sets, by introducing a type synonym for the objects, and identifying homs as necessary.

This is analogous to 'the quotient of a group by the normal closure of a subset', rather than 'the quotient of a group by a normal subgroup'. When taking the quotient by a congruence relation, functor_map_eq_iff says that no unnecessary identifications have been made.

def HomRel (C : Type u_1) [Quiver C] :
Sort (max (u_1 + 1) u_2)

A HomRel on C consists of a relation on every hom-set.

Equations
Instances For
    instance instInhabitedHomRel (C : Type u_1) [Quiver C] :
    Equations

    A functor induces a HomRel on its domain, relating those maps that have the same image.

    Equations
    • F.homRel f g = (F.map f = F.map g)
    Instances For
      @[simp]
      theorem CategoryTheory.Functor.homRel_iff {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] (F : CategoryTheory.Functor C D) {X Y : C} (f g : X Y) :
      F.homRel f g F.map f = F.map g

      A HomRel is a congruence when it's an equivalence on every hom-set, and it can be composed from left and right.

      Instances

        A type synonym for C, thought of as the objects of the quotient category.

        • as : C

          The object of C.

        Instances For
          theorem CategoryTheory.Quotient.ext {C : Type u_1} {inst✝ : CategoryTheory.Category.{u_2, u_1} C} {r : HomRel C} {x y : CategoryTheory.Quotient r} (as : x.as = y.as) :
          x = y
          inductive CategoryTheory.Quotient.CompClosure {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] (r : HomRel C) ⦃s t : C :
          (s t)(s t)Prop

          Generates the closure of a family of relations w.r.t. composition from left and right.

          Instances For
            theorem CategoryTheory.Quotient.CompClosure.of {C : Type u_2} [CategoryTheory.Category.{u_1, u_2} C] (r : HomRel C) {a b : C} (m₁ m₂ : a b) (h : r m₁ m₂) :

            Hom-sets of the quotient category.

            Equations
            Instances For

              Composition in the quotient category.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                The functor from a category to its quotient.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  theorem CategoryTheory.Quotient.induction {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] (r : HomRel C) {P : {a b : CategoryTheory.Quotient r} → (a b)Prop} (h : ∀ {x y : C} (f : x y), P ((CategoryTheory.Quotient.functor r).map f)) {a b : CategoryTheory.Quotient r} (f : a b) :
                  P f
                  theorem CategoryTheory.Quotient.sound {C : Type u_2} [CategoryTheory.Category.{u_1, u_2} C] (r : HomRel C) {a b : C} {f₁ f₂ : a b} (h : r f₁ f₂) :
                  def CategoryTheory.Quotient.lift {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] (r : HomRel C) {D : Type u_3} [CategoryTheory.Category.{u_4, u_3} D] (F : CategoryTheory.Functor C D) (H : ∀ (x y : C) (f₁ f₂ : x y), r f₁ f₂F.map f₁ = F.map f₂) :

                  The induced functor on the quotient category.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    theorem CategoryTheory.Quotient.lift_spec {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] (r : HomRel C) {D : Type u_3} [CategoryTheory.Category.{u_4, u_3} D] (F : CategoryTheory.Functor C D) (H : ∀ (x y : C) (f₁ f₂ : x y), r f₁ f₂F.map f₁ = F.map f₂) :
                    theorem CategoryTheory.Quotient.lift_unique {C : Type u_3} [CategoryTheory.Category.{u_1, u_3} C] (r : HomRel C) {D : Type u_4} [CategoryTheory.Category.{u_2, u_4} D] (F : CategoryTheory.Functor C D) (H : ∀ (x y : C) (f₁ f₂ : x y), r f₁ f₂F.map f₁ = F.map f₂) (Φ : CategoryTheory.Functor (CategoryTheory.Quotient r) D) (hΦ : (CategoryTheory.Quotient.functor r).comp Φ = F) :
                    def CategoryTheory.Quotient.lift.isLift {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] (r : HomRel C) {D : Type u_3} [CategoryTheory.Category.{u_4, u_3} D] (F : CategoryTheory.Functor C D) (H : ∀ (x y : C) (f₁ f₂ : x y), r f₁ f₂F.map f₁ = F.map f₂) :

                    The original functor factors through the induced functor.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      @[simp]
                      theorem CategoryTheory.Quotient.lift.isLift_hom {C : Type u_4} [CategoryTheory.Category.{u_3, u_4} C] (r : HomRel C) {D : Type u_2} [CategoryTheory.Category.{u_1, u_2} D] (F : CategoryTheory.Functor C D) (H : ∀ (x y : C) (f₁ f₂ : x y), r f₁ f₂F.map f₁ = F.map f₂) (X : C) :
                      @[simp]
                      theorem CategoryTheory.Quotient.lift.isLift_inv {C : Type u_4} [CategoryTheory.Category.{u_3, u_4} C] (r : HomRel C) {D : Type u_2} [CategoryTheory.Category.{u_1, u_2} D] (F : CategoryTheory.Functor C D) (H : ∀ (x y : C) (f₁ f₂ : x y), r f₁ f₂F.map f₁ = F.map f₂) (X : C) :
                      theorem CategoryTheory.Quotient.lift_obj_functor_obj {C : Type u_4} [CategoryTheory.Category.{u_2, u_4} C] (r : HomRel C) {D : Type u_1} [CategoryTheory.Category.{u_3, u_1} D] (F : CategoryTheory.Functor C D) (H : ∀ (x y : C) (f₁ f₂ : x y), r f₁ f₂F.map f₁ = F.map f₂) (X : C) :
                      theorem CategoryTheory.Quotient.lift_map_functor_map {C : Type u_2} [CategoryTheory.Category.{u_1, u_2} C] (r : HomRel C) {D : Type u_4} [CategoryTheory.Category.{u_3, u_4} D] (F : CategoryTheory.Functor C D) (H : ∀ (x y : C) (f₁ f₂ : x y), r f₁ f₂F.map f₁ = F.map f₂) {X Y : C} (f : X Y) :

                      In order to define a natural transformation F ⟶ G with F G : Quotient r ⥤ D, it suffices to do so after precomposing with Quotient.functor r.

                      Equations
                      Instances For

                        In order to define a natural isomorphism F ≅ G with F G : Quotient r ⥤ D, it suffices to do so after precomposing with Quotient.functor r.

                        Equations
                        Instances For