The canonical t-structure on the derived category #
In this file, we introduce the canonical t-structure on the derived category of an abelian category.
def
DerivedCategory.TStructure.t
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[HasDerivedCategory C]
:
The canonical t-structure on DerivedCategory C
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[reducible, inline]
abbrev
DerivedCategory.IsLE
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[HasDerivedCategory C]
(X : DerivedCategory C)
(n : ℤ)
:
Given X : DerivedCategory C
and n : ℤ
, this property means
that X
is ≤ n
for the canonical t-structure.
Equations
- X.IsLE n = DerivedCategory.TStructure.t.IsLE X n
Instances For
@[reducible, inline]
abbrev
DerivedCategory.IsGE
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[HasDerivedCategory C]
(X : DerivedCategory C)
(n : ℤ)
:
Given X : DerivedCategory C
and n : ℤ
, this property means
that X
is ≥ n
for the canonical t-structure.
Equations
- X.IsGE n = DerivedCategory.TStructure.t.IsGE X n
Instances For
theorem
DerivedCategory.isGE_iff
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[HasDerivedCategory C]
(X : DerivedCategory C)
(n : ℤ)
:
theorem
DerivedCategory.isLE_iff
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[HasDerivedCategory C]
(X : DerivedCategory C)
(n : ℤ)
:
theorem
DerivedCategory.isZero_of_isGE
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[HasDerivedCategory C]
(X : DerivedCategory C)
(n i : ℤ)
(hi : i < n)
[hX : X.IsGE n]
:
CategoryTheory.Limits.IsZero ((homologyFunctor C i).obj X)
theorem
DerivedCategory.isZero_of_isLE
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[HasDerivedCategory C]
(X : DerivedCategory C)
(n i : ℤ)
(hi : n < i)
[hX : X.IsLE n]
:
CategoryTheory.Limits.IsZero ((homologyFunctor C i).obj X)
theorem
DerivedCategory.isGE_Q_obj_iff
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[HasDerivedCategory C]
(K : CochainComplex C ℤ)
(n : ℤ)
:
theorem
DerivedCategory.isLE_Q_obj_iff
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[HasDerivedCategory C]
(K : CochainComplex C ℤ)
(n : ℤ)
:
instance
DerivedCategory.instIsGEObjCochainComplexIntQOfIsGE
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[HasDerivedCategory C]
(K : CochainComplex C ℤ)
(n : ℤ)
[K.IsGE n]
:
instance
DerivedCategory.instIsLEObjCochainComplexIntQOfIsLE
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[HasDerivedCategory C]
(K : CochainComplex C ℤ)
(n : ℤ)
[K.IsLE n]
:
instance
DerivedCategory.instIsGEObjSingleFunctor
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[HasDerivedCategory C]
(X : C)
(n : ℤ)
:
((singleFunctor C n).obj X).IsGE n
instance
DerivedCategory.instIsLEObjSingleFunctor
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[HasDerivedCategory C]
(X : C)
(n : ℤ)
:
((singleFunctor C n).obj X).IsLE n
theorem
DerivedCategory.exists_iso_Q_obj_of_isLE
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[HasDerivedCategory C]
(X : DerivedCategory C)
(n : ℤ)
[hX : X.IsLE n]
:
∃ (K : CochainComplex C ℤ) (_ : K.IsStrictlyLE n), Nonempty (X ≅ Q.obj K)
theorem
DerivedCategory.exists_iso_Q_obj_of_isGE
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[HasDerivedCategory C]
(X : DerivedCategory C)
(n : ℤ)
[hX : X.IsGE n]
:
∃ (K : CochainComplex C ℤ) (_ : K.IsStrictlyGE n), Nonempty (X ≅ Q.obj K)
theorem
DerivedCategory.exists_iso_Q_obj_of_isGE_of_isLE
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[HasDerivedCategory C]
(X : DerivedCategory C)
(a b : ℤ)
[X.IsGE a]
[X.IsLE b]
:
∃ (K : CochainComplex C ℤ) (_ : K.IsStrictlyGE a) (_ : K.IsStrictlyLE b), Nonempty (X ≅ Q.obj K)