Documentation

Mathlib.Algebra.Homology.Embedding.StupidTrunc

The stupid truncation of homological complexes #

Given an embedding e : c.Embedding c' of complex shapes, we define a functor stupidTruncFunctor : HomologicalComplex C c' ⥤ HomologicalComplex C c' which sends K to K.stupidTrunc e which is defined as (K.restriction e).extend e.

TODO (@joelriou) #

noncomputable def HomologicalComplex.stupidTrunc {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroObject C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsRelIff] :

The stupid truncation of a complex K : HomologicalComplex C c' relatively to an embedding e : c.Embedding c' of complex shapes.

Equations
  • K.stupidTrunc e = (K.restriction e).extend e
Instances For
    instance HomologicalComplex.instIsStrictlySupportedStupidTrunc {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroObject C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsRelIff] :
    (K.stupidTrunc e).IsStrictlySupported e
    noncomputable def HomologicalComplex.stupidTruncXIso {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroObject C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsRelIff] {i : ι} {i' : ι'} (hi' : e.f i = i') :
    (K.stupidTrunc e).X i' K.X i'

    The isomorphism (K.stupidTrunc e).X i' ≅ K.X i' when i is in the image of e.f.

    Equations
    Instances For
      theorem HomologicalComplex.isZero_stupidTrunc_X {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroObject C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsRelIff] (i' : ι') (hi' : ∀ (i : ι), e.f i i') :
      CategoryTheory.Limits.IsZero ((K.stupidTrunc e).X i')
      instance HomologicalComplex.instIsStrictlySupportedStupidTrunc_1 {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_5, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroObject C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsRelIff] {ι'' : Type u_4} {c'' : ComplexShape ι''} (e' : c''.Embedding c') [K.IsStrictlySupported e'] :
      (K.stupidTrunc e).IsStrictlySupported e'
      theorem HomologicalComplex.isZero_stupidTrunc_iff {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroObject C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsRelIff] :
      CategoryTheory.Limits.IsZero (K.stupidTrunc e) K.IsStrictlySupportedOutside e
      noncomputable def HomologicalComplex.stupidTruncMap {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroObject C] {K L : HomologicalComplex C c'} (φ : K L) (e : c.Embedding c') [e.IsRelIff] :
      K.stupidTrunc e L.stupidTrunc e

      The morphism K.stupidTrunc e ⟶ L.stupidTrunc e induced by a morphism K ⟶ L.

      Equations
      Instances For
        @[simp]
        theorem HomologicalComplex.stupidTruncMap_stupidTruncXIso_hom {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroObject C] {K L : HomologicalComplex C c'} (φ : K L) (e : c.Embedding c') [e.IsRelIff] {i : ι} {i' : ι'} (hi : e.f i = i') :
        CategoryTheory.CategoryStruct.comp ((HomologicalComplex.stupidTruncMap φ e).f i') (L.stupidTruncXIso e hi).hom = CategoryTheory.CategoryStruct.comp (K.stupidTruncXIso e hi).hom (φ.f i')
        @[simp]
        theorem HomologicalComplex.stupidTruncMap_stupidTruncXIso_hom_assoc {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroObject C] {K L : HomologicalComplex C c'} (φ : K L) (e : c.Embedding c') [e.IsRelIff] {i : ι} {i' : ι'} (hi : e.f i = i') {Z : C} (h : L.X i' Z) :

        The stupid truncation functor HomologicalComplex C c' ⥤ HomologicalComplex C c' given by an embedding e : Embedding c c' of complex shapes.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem ComplexShape.Embedding.stupidTruncFunctor_map {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} (e : c.Embedding c') (C : Type u_3) [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroObject C] [e.IsRelIff] {X✝ Y✝ : HomologicalComplex C c'} (φ : X✝ Y✝) :
          (e.stupidTruncFunctor C).map φ = HomologicalComplex.stupidTruncMap φ e
          @[simp]
          theorem ComplexShape.Embedding.stupidTruncFunctor_obj {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} (e : c.Embedding c') (C : Type u_3) [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroObject C] [e.IsRelIff] (K : HomologicalComplex C c') :
          (e.stupidTruncFunctor C).obj K = K.stupidTrunc e