# Documentation

Mathlib.Algebra.Homology.ExactSequence

# Exact sequences #

A sequence of n composable arrows S : ComposableArrows C (i.e. a functor S : Fin (n + 1) ⥤ C) is said to be exact (S.Exact) if the composition of two consecutive arrows are zero (S.IsComplex) and the diagram is exact at each i for 1 ≤ i < n.

Together with the inductive construction of composable arrows ComposableArrows.precomp, this is useful in order to state that certain finite sequences of morphisms are exact (e.g the snake lemma), even though in the applications it would usually be more convenient to use individual lemmas expressing the exactness at a particular object.

This implementation is a refactor of exact_seq with appeared in the Liquid Tensor Experiement as a property of lists in Arrow C.

@[simp]
theorem CategoryTheory.ShortComplex.toComposableArrows_map {C : Type u_1} [] (S : ) :
∀ {X Y : Fin (1 + 1 + 1)} (g : X Y), = CategoryTheory.ComposableArrows.Precomp.map S.f X Y (_ : X Y)
@[simp]
theorem CategoryTheory.ShortComplex.toComposableArrows_obj {C : Type u_1} [] (S : ) :
∀ (a : Fin (1 + 1 + 1)),

The composable arrows associated to a short complex.

Equations
Instances For
structure CategoryTheory.ComposableArrows.IsComplex {C : Type u_1} [] {n : } (S : ) :

F : ComposableArrows C n is a complex if all compositions of two consecutive arrows are zero.

Instances For
theorem CategoryTheory.ComposableArrows.IsComplex.zero_assoc {C : Type u_1} [] {n : } {S : } (i : ) (hi : autoParam (i + 2 n) _auto✝) {Z : C} (h : S.obj { val := i + 2, isLt := (_ : i + 2 < n + 1) } Z) :
theorem CategoryTheory.ComposableArrows.IsComplex.zero'_assoc {C : Type u_1} [] {n : } {S : } (i : ) (j : ) (k : ) (hij : autoParam (i + 1 = j) _auto✝) (hjk : autoParam (j + 1 = k) _auto✝) (hk : autoParam (k n) _auto✝) {Z : C} (h : S.obj { val := k, isLt := (_ : k < n + 1) } Z) :
theorem CategoryTheory.ComposableArrows.IsComplex.zero' {C : Type u_1} [] {n : } {S : } (i : ) (j : ) (k : ) (hij : autoParam (i + 1 = j) _auto✝) (hjk : autoParam (j + 1 = k) _auto✝) (hk : autoParam (k n) _auto✝) :
theorem CategoryTheory.ComposableArrows.isComplex_of_iso {C : Type u_1} [] {n : } {S₁ : } {S₂ : } (e : S₁ S₂) :
theorem CategoryTheory.ComposableArrows.isComplex_iff_of_iso {C : Type u_1} [] {n : } {S₁ : } {S₂ : } (e : S₁ S₂) :
@[reducible]
def CategoryTheory.ComposableArrows.sc' {C : Type u_1} [] {n : } (S : ) (i : ) (j : ) (k : ) (hij : autoParam (i + 1 = j) _auto✝) (hjk : autoParam (j + 1 = k) _auto✝) (hk : autoParam (k n) _auto✝) :

The short complex consisting of maps S.map' i j and S.map' j k when we know that S : ComposableArrows C n satisfies S.IsComplex.

Equations
• One or more equations did not get rendered due to their size.
Instances For
@[inline, reducible]
abbrev CategoryTheory.ComposableArrows.sc {C : Type u_1} [] {n : } (S : ) (i : ) (hi : autoParam (i + 2 n) _auto✝) :

The short complex consisting of maps S.map' i (i + 1) and S.map' (i + 1) (i + 2) when we know that S : ComposableArrows C n satisfies S.IsComplex.

Equations
Instances For
structure CategoryTheory.ComposableArrows.Exact {C : Type u_1} [] {n : } (S : ) extends :

F : ComposableArrows C n is exact if it is a complex and that all short complexes consisting of two consecutive arrows are exact.

Instances For
theorem CategoryTheory.ComposableArrows.IsExact.exact' {C : Type u_1} [] {n : } {S : } (i : ) (j : ) (k : ) (hij : autoParam (i + 1 = j) _auto✝) (hjk : autoParam (j + 1 = k) _auto✝) (hk : autoParam (k n) _auto✝) :
@[simp]
theorem CategoryTheory.ComposableArrows.sc'Map_τ₂ {C : Type u_1} [] {n : } {S₁ : } {S₂ : } (φ : S₁ S₂) (i : ) (j : ) (k : ) (hij : autoParam (i + 1 = j) _auto✝) (hjk : autoParam (j + 1 = k) _auto✝) (hk : autoParam (k n) _auto✝) :
().τ₂ = φ.app { val := j, isLt := (_ : j < n + 1) }
@[simp]
theorem CategoryTheory.ComposableArrows.sc'Map_τ₁ {C : Type u_1} [] {n : } {S₁ : } {S₂ : } (φ : S₁ S₂) (i : ) (j : ) (k : ) (hij : autoParam (i + 1 = j) _auto✝) (hjk : autoParam (j + 1 = k) _auto✝) (hk : autoParam (k n) _auto✝) :
().τ₁ = φ.app { val := i, isLt := (_ : i < n + 1) }
@[simp]
theorem CategoryTheory.ComposableArrows.sc'Map_τ₃ {C : Type u_1} [] {n : } {S₁ : } {S₂ : } (φ : S₁ S₂) (i : ) (j : ) (k : ) (hij : autoParam (i + 1 = j) _auto✝) (hjk : autoParam (j + 1 = k) _auto✝) (hk : autoParam (k n) _auto✝) :
().τ₃ = φ.app { val := k, isLt := (_ : k < n + 1) }
def CategoryTheory.ComposableArrows.sc'Map {C : Type u_1} [] {n : } {S₁ : } {S₂ : } (φ : S₁ S₂) (i : ) (j : ) (k : ) (hij : autoParam (i + 1 = j) _auto✝) (hjk : autoParam (j + 1 = k) _auto✝) (hk : autoParam (k n) _auto✝) :

Functoriality maps for ComposableArrows.sc'.

Equations
• One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem CategoryTheory.ComposableArrows.scMap_τ₂ {C : Type u_1} [] {n : } {S₁ : } {S₂ : } (φ : S₁ S₂) (i : ) (hi : autoParam (i + 2 n) _auto✝) :
().τ₂ = φ.app { val := i + 1, isLt := (_ : i + 1 < n + 1) }
@[simp]
theorem CategoryTheory.ComposableArrows.scMap_τ₃ {C : Type u_1} [] {n : } {S₁ : } {S₂ : } (φ : S₁ S₂) (i : ) (hi : autoParam (i + 2 n) _auto✝) :
().τ₃ = φ.app { val := i + 2, isLt := (_ : i + 2 < n + 1) }
@[simp]
theorem CategoryTheory.ComposableArrows.scMap_τ₁ {C : Type u_1} [] {n : } {S₁ : } {S₂ : } (φ : S₁ S₂) (i : ) (hi : autoParam (i + 2 n) _auto✝) :
().τ₁ = φ.app { val := i, isLt := (_ : i < n + 1) }
def CategoryTheory.ComposableArrows.scMap {C : Type u_1} [] {n : } {S₁ : } {S₂ : } (φ : S₁ S₂) (i : ) (hi : autoParam (i + 2 n) _auto✝) :

Functoriality maps for ComposableArrows.sc.

Equations
Instances For
@[simp]
theorem CategoryTheory.ComposableArrows.sc'MapIso_hom {C : Type u_1} [] {n : } {S₁ : } {S₂ : } (e : S₁ S₂) (i : ) (j : ) (k : ) (hij : autoParam (i + 1 = j) _auto✝) (hjk : autoParam (j + 1 = k) _auto✝) (hk : autoParam (k n) _auto✝) :
().hom = CategoryTheory.ComposableArrows.sc'Map e.hom h₁ h₂ i j k
@[simp]
theorem CategoryTheory.ComposableArrows.sc'MapIso_inv {C : Type u_1} [] {n : } {S₁ : } {S₂ : } (e : S₁ S₂) (i : ) (j : ) (k : ) (hij : autoParam (i + 1 = j) _auto✝) (hjk : autoParam (j + 1 = k) _auto✝) (hk : autoParam (k n) _auto✝) :
().inv = CategoryTheory.ComposableArrows.sc'Map e.inv h₂ h₁ i j k
def CategoryTheory.ComposableArrows.sc'MapIso {C : Type u_1} [] {n : } {S₁ : } {S₂ : } (e : S₁ S₂) (i : ) (j : ) (k : ) (hij : autoParam (i + 1 = j) _auto✝) (hjk : autoParam (j + 1 = k) _auto✝) (hk : autoParam (k n) _auto✝) :

The isomorphism S₁.sc' _ i j k ≅ S₂.sc' _ i j k induced by an isomorphism S₁ ≅ S₂ in ComposableArrows C n.

Equations
• One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem CategoryTheory.ComposableArrows.scMapIso_inv {C : Type u_1} [] {n : } {S₁ : } {S₂ : } (e : S₁ S₂) (i : ) (hi : autoParam (i + 2 n) _auto✝) :
().inv = CategoryTheory.ComposableArrows.scMap e.inv h₂ h₁ i
@[simp]
theorem CategoryTheory.ComposableArrows.scMapIso_hom {C : Type u_1} [] {n : } {S₁ : } {S₂ : } (e : S₁ S₂) (i : ) (hi : autoParam (i + 2 n) _auto✝) :
().hom = CategoryTheory.ComposableArrows.scMap e.hom h₁ h₂ i
def CategoryTheory.ComposableArrows.scMapIso {C : Type u_1} [] {n : } {S₁ : } {S₂ : } (e : S₁ S₂) (i : ) (hi : autoParam (i + 2 n) _auto✝) :

The isomorphism S₁.sc _ i ≅ S₂.sc _ i induced by an isomorphism S₁ ≅ S₂ in ComposableArrows C n.

Equations
Instances For
theorem CategoryTheory.ComposableArrows.exact_of_iso {C : Type u_1} [] {n : } {S₁ : } {S₂ : } (e : S₁ S₂) :
theorem CategoryTheory.ComposableArrows.exact_iff_of_iso {C : Type u_1} [] {n : } {S₁ : } {S₂ : } (e : S₁ S₂) :
theorem CategoryTheory.ComposableArrows.isComplex₂_mk {C : Type u_1} [] (S : ) (w : ) :
theorem CategoryTheory.ComposableArrows.exact₂_mk {C : Type u_1} [] (S : ) (w : ) (h : ) :

If S : ComposableArrows C (n + 2) is such that the first two arrows form an exact sequence and that the tail S.δ₀ is exact, then S is also exact. See ShortComplex.SnakeInput.snake_lemma in Algebra.Homology.ShortComplex.SnakeLemma for a use of this lemma.