Documentation

Mathlib.Algebra.Homology.ShortComplex.Basic

Short complexes #

This file defines the category ShortComplex C of diagrams X₁X₂X₃ such that the composition is zero.

Note: This structure ShortComplex C was first introduced in the Liquid Tensor Experiment.

A short complex in a category C with zero morphisms is the datum of two composable morphisms f : X₁X₂ and g : X₂X₃ such that fg = 0.

Instances For

    Morphisms of short complexes are the commutative diagrams of the obvious shape.

    Instances For
      theorem CategoryTheory.ShortComplex.Hom.ext {C : Type u_1} {inst✝ : Category.{u_3, u_1} C} {inst✝¹ : Limits.HasZeroMorphisms C} {S₁ S₂ : ShortComplex C} {x y : S₁.Hom S₂} (τ₁ : x.τ₁ = y.τ₁) (τ₂ : x.τ₂ = y.τ₂) (τ₃ : x.τ₃ = y.τ₃) :
      x = y
      theorem CategoryTheory.ShortComplex.Hom.comm₁₂_assoc {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ : ShortComplex C} (self : S₁.Hom S₂) {Z : C} (h : S₂.X₂ Z) :
      theorem CategoryTheory.ShortComplex.Hom.comm₂₃_assoc {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ : ShortComplex C} (self : S₁.Hom S₂) {Z : C} (h : S₂.X₃ Z) :

      The identity morphism of a short complex.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        def CategoryTheory.ShortComplex.Hom.comp {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ S₃ : ShortComplex C} (φ₁₂ : S₁.Hom S₂) (φ₂₃ : S₂.Hom S₃) :
        S₁.Hom S₃

        The composition of morphisms of short complexes.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.ShortComplex.Hom.comp_τ₂ {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ S₃ : ShortComplex C} (φ₁₂ : S₁.Hom S₂) (φ₂₃ : S₂.Hom S₃) :
          (φ₁₂.comp φ₂₃).τ₂ = CategoryStruct.comp φ₁₂.τ₂ φ₂₃.τ₂
          @[simp]
          theorem CategoryTheory.ShortComplex.Hom.comp_τ₃ {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ S₃ : ShortComplex C} (φ₁₂ : S₁.Hom S₂) (φ₂₃ : S₂.Hom S₃) :
          (φ₁₂.comp φ₂₃).τ₃ = CategoryStruct.comp φ₁₂.τ₃ φ₂₃.τ₃
          @[simp]
          theorem CategoryTheory.ShortComplex.Hom.comp_τ₁ {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ S₃ : ShortComplex C} (φ₁₂ : S₁.Hom S₂) (φ₂₃ : S₂.Hom S₃) :
          (φ₁₂.comp φ₂₃).τ₁ = CategoryStruct.comp φ₁₂.τ₁ φ₂₃.τ₁
          theorem CategoryTheory.ShortComplex.hom_ext {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ : ShortComplex C} (f g : S₁ S₂) (h₁ : f.τ₁ = g.τ₁) (h₂ : f.τ₂ = g.τ₂) (h₃ : f.τ₃ = g.τ₃) :
          f = g
          def CategoryTheory.ShortComplex.homMk {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ : ShortComplex C} (τ₁ : S₁.X₁ S₂.X₁) (τ₂ : S₁.X₂ S₂.X₂) (τ₃ : S₁.X₃ S₂.X₃) (comm₁₂ : CategoryStruct.comp τ₁ S₂.f = CategoryStruct.comp S₁.f τ₂) (comm₂₃ : CategoryStruct.comp τ₂ S₂.g = CategoryStruct.comp S₁.g τ₃) :
          S₁ S₂

          A constructor for morphisms in ShortComplex C when the commutativity conditions are not obvious.

          Equations
          • CategoryTheory.ShortComplex.homMk τ₁ τ₂ τ₃ comm₁₂ comm₂₃ = { τ₁ := τ₁, τ₂ := τ₂, τ₃ := τ₃, comm₁₂ := comm₁₂, comm₂₃ := comm₂₃ }
          Instances For
            @[simp]
            theorem CategoryTheory.ShortComplex.homMk_τ₂ {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ : ShortComplex C} (τ₁ : S₁.X₁ S₂.X₁) (τ₂ : S₁.X₂ S₂.X₂) (τ₃ : S₁.X₃ S₂.X₃) (comm₁₂ : CategoryStruct.comp τ₁ S₂.f = CategoryStruct.comp S₁.f τ₂) (comm₂₃ : CategoryStruct.comp τ₂ S₂.g = CategoryStruct.comp S₁.g τ₃) :
            (homMk τ₁ τ₂ τ₃ comm₁₂ comm₂₃).τ₂ = τ₂
            @[simp]
            theorem CategoryTheory.ShortComplex.homMk_τ₁ {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ : ShortComplex C} (τ₁ : S₁.X₁ S₂.X₁) (τ₂ : S₁.X₂ S₂.X₂) (τ₃ : S₁.X₃ S₂.X₃) (comm₁₂ : CategoryStruct.comp τ₁ S₂.f = CategoryStruct.comp S₁.f τ₂) (comm₂₃ : CategoryStruct.comp τ₂ S₂.g = CategoryStruct.comp S₁.g τ₃) :
            (homMk τ₁ τ₂ τ₃ comm₁₂ comm₂₃).τ₁ = τ₁
            @[simp]
            theorem CategoryTheory.ShortComplex.homMk_τ₃ {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ : ShortComplex C} (τ₁ : S₁.X₁ S₂.X₁) (τ₂ : S₁.X₂ S₂.X₂) (τ₃ : S₁.X₃ S₂.X₃) (comm₁₂ : CategoryStruct.comp τ₁ S₂.f = CategoryStruct.comp S₁.f τ₂) (comm₂₃ : CategoryStruct.comp τ₂ S₂.g = CategoryStruct.comp S₁.g τ₃) :
            (homMk τ₁ τ₂ τ₃ comm₁₂ comm₂₃).τ₃ = τ₃
            @[simp]
            theorem CategoryTheory.ShortComplex.comp_τ₁ {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ S₃ : ShortComplex C} (φ₁₂ : S₁ S₂) (φ₂₃ : S₂ S₃) :
            (CategoryStruct.comp φ₁₂ φ₂₃).τ₁ = CategoryStruct.comp φ₁₂.τ₁ φ₂₃.τ₁
            theorem CategoryTheory.ShortComplex.comp_τ₁_assoc {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ S₃ : ShortComplex C} (φ₁₂ : S₁ S₂) (φ₂₃ : S₂ S₃) {Z : C} (h : S₃.X₁ Z) :
            CategoryStruct.comp (CategoryStruct.comp φ₁₂ φ₂₃).τ₁ h = CategoryStruct.comp φ₁₂.τ₁ (CategoryStruct.comp φ₂₃.τ₁ h)
            @[simp]
            theorem CategoryTheory.ShortComplex.comp_τ₂ {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ S₃ : ShortComplex C} (φ₁₂ : S₁ S₂) (φ₂₃ : S₂ S₃) :
            (CategoryStruct.comp φ₁₂ φ₂₃).τ₂ = CategoryStruct.comp φ₁₂.τ₂ φ₂₃.τ₂
            theorem CategoryTheory.ShortComplex.comp_τ₂_assoc {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ S₃ : ShortComplex C} (φ₁₂ : S₁ S₂) (φ₂₃ : S₂ S₃) {Z : C} (h : S₃.X₂ Z) :
            CategoryStruct.comp (CategoryStruct.comp φ₁₂ φ₂₃).τ₂ h = CategoryStruct.comp φ₁₂.τ₂ (CategoryStruct.comp φ₂₃.τ₂ h)
            @[simp]
            theorem CategoryTheory.ShortComplex.comp_τ₃ {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ S₃ : ShortComplex C} (φ₁₂ : S₁ S₂) (φ₂₃ : S₂ S₃) :
            (CategoryStruct.comp φ₁₂ φ₂₃).τ₃ = CategoryStruct.comp φ₁₂.τ₃ φ₂₃.τ₃
            theorem CategoryTheory.ShortComplex.comp_τ₃_assoc {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ S₃ : ShortComplex C} (φ₁₂ : S₁ S₂) (φ₂₃ : S₂ S₃) {Z : C} (h : S₃.X₃ Z) :
            CategoryStruct.comp (CategoryStruct.comp φ₁₂ φ₂₃).τ₃ h = CategoryStruct.comp φ₁₂.τ₃ (CategoryStruct.comp φ₂₃.τ₃ h)
            Equations

            The first projection functor ShortComplex C ⥤ C.

            Equations
            Instances For
              @[simp]
              theorem CategoryTheory.ShortComplex.π₁_map {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {X✝ Y✝ : ShortComplex C} (f : X✝ Y✝) :
              π₁.map f = f.τ₁

              The second projection functor ShortComplex C ⥤ C.

              Equations
              Instances For
                @[simp]
                theorem CategoryTheory.ShortComplex.π₂_map {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {X✝ Y✝ : ShortComplex C} (f : X✝ Y✝) :
                π₂.map f = f.τ₂

                The third projection functor ShortComplex C ⥤ C.

                Equations
                Instances For
                  @[simp]
                  theorem CategoryTheory.ShortComplex.π₃_map {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {X✝ Y✝ : ShortComplex C} (f : X✝ Y✝) :
                  π₃.map f = f.τ₃

                  The natural transformation π₁π₂ induced by S.f for all S : ShortComplex C.

                  Equations
                  Instances For

                    The natural transformation π₂π₃ induced by S.g for all S : ShortComplex C.

                    Equations
                    Instances For

                      The short complex in D obtained by applying a functor F : C ⥤ D to a short complex in C, assuming that F preserves zero morphisms.

                      Equations
                      Instances For
                        @[simp]
                        theorem CategoryTheory.ShortComplex.map_g {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [Limits.HasZeroMorphisms C] (S : ShortComplex C) [Limits.HasZeroMorphisms D] (F : Functor C D) [F.PreservesZeroMorphisms] :
                        (S.map F).g = F.map S.g
                        @[simp]
                        theorem CategoryTheory.ShortComplex.map_f {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [Limits.HasZeroMorphisms C] (S : ShortComplex C) [Limits.HasZeroMorphisms D] (F : Functor C D) [F.PreservesZeroMorphisms] :
                        (S.map F).f = F.map S.f
                        @[simp]
                        theorem CategoryTheory.ShortComplex.map_X₁ {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [Limits.HasZeroMorphisms C] (S : ShortComplex C) [Limits.HasZeroMorphisms D] (F : Functor C D) [F.PreservesZeroMorphisms] :
                        (S.map F).X₁ = F.obj S.X₁
                        @[simp]
                        theorem CategoryTheory.ShortComplex.map_X₃ {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [Limits.HasZeroMorphisms C] (S : ShortComplex C) [Limits.HasZeroMorphisms D] (F : Functor C D) [F.PreservesZeroMorphisms] :
                        (S.map F).X₃ = F.obj S.X₃
                        @[simp]
                        theorem CategoryTheory.ShortComplex.map_X₂ {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [Limits.HasZeroMorphisms C] (S : ShortComplex C) [Limits.HasZeroMorphisms D] (F : Functor C D) [F.PreservesZeroMorphisms] :
                        (S.map F).X₂ = F.obj S.X₂
                        def CategoryTheory.ShortComplex.mapNatTrans {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [Limits.HasZeroMorphisms C] (S : ShortComplex C) [Limits.HasZeroMorphisms D] {F G : Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] (τ : F G) :
                        S.map F S.map G

                        The morphism of short complexes S.map F ⟶ S.map G induced by a natural transformation F ⟶ G.

                        Equations
                        • S.mapNatTrans τ = { τ₁ := τ.app S.X₁, τ₂ := τ.app S.X₂, τ₃ := τ.app S.X₃, comm₁₂ := , comm₂₃ := }
                        Instances For
                          @[simp]
                          theorem CategoryTheory.ShortComplex.mapNatTrans_τ₂ {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [Limits.HasZeroMorphisms C] (S : ShortComplex C) [Limits.HasZeroMorphisms D] {F G : Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] (τ : F G) :
                          (S.mapNatTrans τ).τ₂ = τ.app S.X₂
                          @[simp]
                          theorem CategoryTheory.ShortComplex.mapNatTrans_τ₃ {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [Limits.HasZeroMorphisms C] (S : ShortComplex C) [Limits.HasZeroMorphisms D] {F G : Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] (τ : F G) :
                          (S.mapNatTrans τ).τ₃ = τ.app S.X₃
                          @[simp]
                          theorem CategoryTheory.ShortComplex.mapNatTrans_τ₁ {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [Limits.HasZeroMorphisms C] (S : ShortComplex C) [Limits.HasZeroMorphisms D] {F G : Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] (τ : F G) :
                          (S.mapNatTrans τ).τ₁ = τ.app S.X₁
                          def CategoryTheory.ShortComplex.mapNatIso {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [Limits.HasZeroMorphisms C] (S : ShortComplex C) [Limits.HasZeroMorphisms D] {F G : Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] (τ : F G) :
                          S.map F S.map G

                          The isomorphism of short complexes S.map F ≅ S.map G induced by a natural isomorphism F ≅ G.

                          Equations
                          • S.mapNatIso τ = { hom := S.mapNatTrans τ.hom, inv := S.mapNatTrans τ.inv, hom_inv_id := , inv_hom_id := }
                          Instances For
                            @[simp]
                            theorem CategoryTheory.ShortComplex.mapNatIso_inv {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [Limits.HasZeroMorphisms C] (S : ShortComplex C) [Limits.HasZeroMorphisms D] {F G : Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] (τ : F G) :
                            (S.mapNatIso τ).inv = S.mapNatTrans τ.inv
                            @[simp]
                            theorem CategoryTheory.ShortComplex.mapNatIso_hom {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [Limits.HasZeroMorphisms C] (S : ShortComplex C) [Limits.HasZeroMorphisms D] {F G : Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] (τ : F G) :
                            (S.mapNatIso τ).hom = S.mapNatTrans τ.hom

                            The functor ShortComplex C ⥤ ShortComplex D induced by a functor C ⥤ D which preserves zero morphisms.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              @[simp]
                              theorem CategoryTheory.Functor.mapShortComplex_map_τ₃ {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [Limits.HasZeroMorphisms C] [Limits.HasZeroMorphisms D] (F : Functor C D) [F.PreservesZeroMorphisms] {X✝ Y✝ : ShortComplex C} (φ : X✝ Y✝) :
                              (F.mapShortComplex.map φ).τ₃ = F.map φ.τ₃
                              @[simp]
                              theorem CategoryTheory.Functor.mapShortComplex_obj {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [Limits.HasZeroMorphisms C] [Limits.HasZeroMorphisms D] (F : Functor C D) [F.PreservesZeroMorphisms] (S : ShortComplex C) :
                              F.mapShortComplex.obj S = S.map F
                              @[simp]
                              theorem CategoryTheory.Functor.mapShortComplex_map_τ₂ {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [Limits.HasZeroMorphisms C] [Limits.HasZeroMorphisms D] (F : Functor C D) [F.PreservesZeroMorphisms] {X✝ Y✝ : ShortComplex C} (φ : X✝ Y✝) :
                              (F.mapShortComplex.map φ).τ₂ = F.map φ.τ₂
                              @[simp]
                              theorem CategoryTheory.Functor.mapShortComplex_map_τ₁ {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [Limits.HasZeroMorphisms C] [Limits.HasZeroMorphisms D] (F : Functor C D) [F.PreservesZeroMorphisms] {X✝ Y✝ : ShortComplex C} (φ : X✝ Y✝) :
                              (F.mapShortComplex.map φ).τ₁ = F.map φ.τ₁
                              def CategoryTheory.ShortComplex.isoMk {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ : ShortComplex C} (e₁ : S₁.X₁ S₂.X₁) (e₂ : S₁.X₂ S₂.X₂) (e₃ : S₁.X₃ S₂.X₃) (comm₁₂ : CategoryStruct.comp e₁.hom S₂.f = CategoryStruct.comp S₁.f e₂.hom := by aesop_cat) (comm₂₃ : CategoryStruct.comp e₂.hom S₂.g = CategoryStruct.comp S₁.g e₃.hom := by aesop_cat) :
                              S₁ S₂

                              A constructor for isomorphisms in the category ShortComplex C

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For
                                @[simp]
                                theorem CategoryTheory.ShortComplex.isoMk_hom_τ₃ {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ : ShortComplex C} (e₁ : S₁.X₁ S₂.X₁) (e₂ : S₁.X₂ S₂.X₂) (e₃ : S₁.X₃ S₂.X₃) (comm₁₂ : CategoryStruct.comp e₁.hom S₂.f = CategoryStruct.comp S₁.f e₂.hom := by aesop_cat) (comm₂₃ : CategoryStruct.comp e₂.hom S₂.g = CategoryStruct.comp S₁.g e₃.hom := by aesop_cat) :
                                (isoMk e₁ e₂ e₃ comm₁₂ comm₂₃).hom.τ₃ = e₃.hom
                                @[simp]
                                theorem CategoryTheory.ShortComplex.isoMk_hom_τ₂ {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ : ShortComplex C} (e₁ : S₁.X₁ S₂.X₁) (e₂ : S₁.X₂ S₂.X₂) (e₃ : S₁.X₃ S₂.X₃) (comm₁₂ : CategoryStruct.comp e₁.hom S₂.f = CategoryStruct.comp S₁.f e₂.hom := by aesop_cat) (comm₂₃ : CategoryStruct.comp e₂.hom S₂.g = CategoryStruct.comp S₁.g e₃.hom := by aesop_cat) :
                                (isoMk e₁ e₂ e₃ comm₁₂ comm₂₃).hom.τ₂ = e₂.hom
                                @[simp]
                                theorem CategoryTheory.ShortComplex.isoMk_inv {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ : ShortComplex C} (e₁ : S₁.X₁ S₂.X₁) (e₂ : S₁.X₂ S₂.X₂) (e₃ : S₁.X₃ S₂.X₃) (comm₁₂ : CategoryStruct.comp e₁.hom S₂.f = CategoryStruct.comp S₁.f e₂.hom := by aesop_cat) (comm₂₃ : CategoryStruct.comp e₂.hom S₂.g = CategoryStruct.comp S₁.g e₃.hom := by aesop_cat) :
                                (isoMk e₁ e₂ e₃ comm₁₂ comm₂₃).inv = homMk e₁.inv e₂.inv e₃.inv
                                @[simp]
                                theorem CategoryTheory.ShortComplex.isoMk_hom_τ₁ {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ : ShortComplex C} (e₁ : S₁.X₁ S₂.X₁) (e₂ : S₁.X₂ S₂.X₂) (e₃ : S₁.X₃ S₂.X₃) (comm₁₂ : CategoryStruct.comp e₁.hom S₂.f = CategoryStruct.comp S₁.f e₂.hom := by aesop_cat) (comm₂₃ : CategoryStruct.comp e₂.hom S₂.g = CategoryStruct.comp S₁.g e₃.hom := by aesop_cat) :
                                (isoMk e₁ e₂ e₃ comm₁₂ comm₂₃).hom.τ₁ = e₁.hom
                                theorem CategoryTheory.ShortComplex.isIso_of_isIso {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ : ShortComplex C} (f : S₁ S₂) [IsIso f.τ₁] [IsIso f.τ₂] [IsIso f.τ₃] :

                                The opposite ShortComplex in Cᵒᵖ associated to a short complex in C.

                                Equations
                                Instances For
                                  def CategoryTheory.ShortComplex.opMap {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ : ShortComplex C} (φ : S₁ S₂) :
                                  S₂.op S₁.op

                                  The opposite morphism in ShortComplex Cᵒᵖ associated to a morphism in ShortComplex C

                                  Equations
                                  Instances For
                                    @[simp]
                                    theorem CategoryTheory.ShortComplex.opMap_τ₂ {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ : ShortComplex C} (φ : S₁ S₂) :
                                    (opMap φ).τ₂ = φ.τ₂.op
                                    @[simp]
                                    theorem CategoryTheory.ShortComplex.opMap_τ₁ {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ : ShortComplex C} (φ : S₁ S₂) :
                                    (opMap φ).τ₁ = φ.τ₃.op
                                    @[simp]
                                    theorem CategoryTheory.ShortComplex.opMap_τ₃ {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ : ShortComplex C} (φ : S₁ S₂) :
                                    (opMap φ).τ₃ = φ.τ₁.op

                                    The ShortComplex in C associated to a short complex in Cᵒᵖ.

                                    Equations
                                    Instances For
                                      def CategoryTheory.ShortComplex.unopMap {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ : ShortComplex Cᵒᵖ} (φ : S₁ S₂) :
                                      S₂.unop S₁.unop

                                      The morphism in ShortComplex C associated to a morphism in ShortComplex Cᵒᵖ

                                      Equations
                                      Instances For
                                        @[simp]
                                        theorem CategoryTheory.ShortComplex.unopMap_τ₂ {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ : ShortComplex Cᵒᵖ} (φ : S₁ S₂) :
                                        (unopMap φ).τ₂ = φ.τ₂.unop
                                        @[simp]
                                        theorem CategoryTheory.ShortComplex.unopMap_τ₃ {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ : ShortComplex Cᵒᵖ} (φ : S₁ S₂) :
                                        (unopMap φ).τ₃ = φ.τ₁.unop
                                        @[simp]
                                        theorem CategoryTheory.ShortComplex.unopMap_τ₁ {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ : ShortComplex Cᵒᵖ} (φ : S₁ S₂) :
                                        (unopMap φ).τ₁ = φ.τ₃.unop

                                        The obvious functor (ShortComplex C)ᵒᵖ ⥤ ShortComplex Cᵒᵖ.

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For
                                          @[simp]
                                          theorem CategoryTheory.ShortComplex.opFunctor_map (C : Type u_1) [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {X✝ Y✝ : (ShortComplex C)ᵒᵖ} (φ : X✝ Y✝) :
                                          (opFunctor C).map φ = opMap φ.unop

                                          The obvious functor ShortComplex Cᵒᵖ ⥤ (ShortComplex C)ᵒᵖ.

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For
                                            @[simp]
                                            theorem CategoryTheory.ShortComplex.unopFunctor_map (C : Type u_1) [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {X✝ Y✝ : ShortComplex Cᵒᵖ} (φ : X✝ Y✝) :
                                            (unopFunctor C).map φ = (unopMap φ).op

                                            The obvious equivalence of categories (ShortComplex C)ᵒᵖ ≌ ShortComplex Cᵒᵖ.

                                            Equations
                                            • One or more equations did not get rendered due to their size.
                                            Instances For
                                              @[reducible, inline]

                                              The canonical isomorphism S.unop.op ≅ S for a short complex S in Cᵒᵖ

                                              Equations
                                              Instances For
                                                @[reducible, inline]

                                                The canonical isomorphism S.op.unop ≅ S for a short complex S

                                                Equations
                                                Instances For