Complexes in functor categories #
We can view a complex valued in a functor category T ⥤ V as
a functor from T to complexes valued in V.
When V is abelian, a morphism of short complexes or homological
complexes in the category T ⥤ V is a quasi-isomorphism iff
it is so after evaluation at any t : T.
Future work #
In fact there is an equivalence of categories
HomologicalComplex (T ⥤ V) c ≌ T ⥤ HomologicalComplex V c.
def
HomologicalComplex.asFunctor
{T : Type u_1}
[CategoryTheory.Category.{v_1, u_1} T]
{V : Type u_2}
[CategoryTheory.Category.{v_2, u_2} V]
[CategoryTheory.Limits.HasZeroMorphisms V]
{ι : Type u_3}
{c : ComplexShape ι}
(C : HomologicalComplex (CategoryTheory.Functor T V) c)
:
A complex of functors gives a functor to complexes.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
HomologicalComplex.asFunctor_obj_X
{T : Type u_1}
[CategoryTheory.Category.{v_1, u_1} T]
{V : Type u_2}
[CategoryTheory.Category.{v_2, u_2} V]
[CategoryTheory.Limits.HasZeroMorphisms V]
{ι : Type u_3}
{c : ComplexShape ι}
(C : HomologicalComplex (CategoryTheory.Functor T V) c)
(t : T)
(i : ι)
:
@[simp]
theorem
HomologicalComplex.asFunctor_obj_d
{T : Type u_1}
[CategoryTheory.Category.{v_1, u_1} T]
{V : Type u_2}
[CategoryTheory.Category.{v_2, u_2} V]
[CategoryTheory.Limits.HasZeroMorphisms V]
{ι : Type u_3}
{c : ComplexShape ι}
(C : HomologicalComplex (CategoryTheory.Functor T V) c)
(t : T)
(i j : ι)
:
@[simp]
theorem
HomologicalComplex.asFunctor_map_f
{T : Type u_1}
[CategoryTheory.Category.{v_1, u_1} T]
{V : Type u_2}
[CategoryTheory.Category.{v_2, u_2} V]
[CategoryTheory.Limits.HasZeroMorphisms V]
{ι : Type u_3}
{c : ComplexShape ι}
(C : HomologicalComplex (CategoryTheory.Functor T V) c)
{X✝ Y✝ : T}
(h : X✝ ⟶ Y✝)
(i : ι)
:
def
HomologicalComplex.complexOfFunctorsToFunctorToComplex
{T : Type u_1}
[CategoryTheory.Category.{v_1, u_1} T]
{V : Type u_2}
[CategoryTheory.Category.{v_2, u_2} V]
[CategoryTheory.Limits.HasZeroMorphisms V]
{ι : Type u_3}
{c : ComplexShape ι}
:
The functorial version of HomologicalComplex.asFunctor.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
HomologicalComplex.complexOfFunctorsToFunctorToComplex_obj
{T : Type u_1}
[CategoryTheory.Category.{v_1, u_1} T]
{V : Type u_2}
[CategoryTheory.Category.{v_2, u_2} V]
[CategoryTheory.Limits.HasZeroMorphisms V]
{ι : Type u_3}
{c : ComplexShape ι}
(C : HomologicalComplex (CategoryTheory.Functor T V) c)
:
@[simp]
theorem
HomologicalComplex.complexOfFunctorsToFunctorToComplex_map_app_f
{T : Type u_1}
[CategoryTheory.Category.{v_1, u_1} T]
{V : Type u_2}
[CategoryTheory.Category.{v_2, u_2} V]
[CategoryTheory.Limits.HasZeroMorphisms V]
{ι : Type u_3}
{c : ComplexShape ι}
{X✝ Y✝ : HomologicalComplex (CategoryTheory.Functor T V) c}
(f : X✝ ⟶ Y✝)
(t : T)
(i : ι)
:
theorem
CategoryTheory.ShortComplex.quasiIso_iff_evaluation
{T : Type u_1}
[Category.{v_1, u_1} T]
{V : Type u_2}
[Category.{v_2, u_2} V]
[Abelian V]
{S₁ S₂ : ShortComplex (Functor T V)}
(f : S₁ ⟶ S₂)
:
theorem
HomologicalComplex.quasiIsoAt_iff_evaluation
{T : Type u_1}
[CategoryTheory.Category.{v_1, u_1} T]
{V : Type u_2}
[CategoryTheory.Category.{v_2, u_2} V]
[CategoryTheory.Abelian V]
{ι : Type u_3}
{c : ComplexShape ι}
{K₁ K₂ : HomologicalComplex (CategoryTheory.Functor T V) c}
(f : K₁ ⟶ K₂)
(i : ι)
:
QuasiIsoAt f i ↔ ∀ (t : T), QuasiIsoAt ((((CategoryTheory.evaluation T V).obj t).mapHomologicalComplex c).map f) i
theorem
HomologicalComplex.quasiIso_iff_evaluation
{T : Type u_1}
[CategoryTheory.Category.{v_1, u_1} T]
{V : Type u_2}
[CategoryTheory.Category.{v_2, u_2} V]
[CategoryTheory.Abelian V]
{ι : Type u_3}
{c : ComplexShape ι}
{K₁ K₂ : HomologicalComplex (CategoryTheory.Functor T V) c}
(f : K₁ ⟶ K₂)
:
QuasiIso f ↔ ∀ (t : T), QuasiIso ((((CategoryTheory.evaluation T V).obj t).mapHomologicalComplex c).map f)