Cochains from or to single complexes #
We introduce constructors Cochain.fromSingleMk and Cocycle.fromSingleMk
for cochains and cocycles from a single complex. We also introduce similar
definitions for cochains and cocyles to a single complex.
noncomputable def
CochainComplex.HomComplex.Cochain.fromSingleMk
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasZeroObject C]
{X : C}
{K : CochainComplex C ℤ}
{p q : ℤ}
(f : X ⟶ K.X q)
{n : ℤ}
:
p + n = q → Cochain ((singleFunctor C p).obj X) K n
Constructor for cochains from a single complex.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CochainComplex.HomComplex.Cochain.fromSingleMk_zero
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasZeroObject C]
(X : C)
(K : CochainComplex C ℤ)
(p q n : ℤ)
(h : p + n = q)
:
@[simp]
theorem
CochainComplex.HomComplex.Cochain.fromSingleMk_v
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasZeroObject C]
{X : C}
{K : CochainComplex C ℤ}
{p q : ℤ}
(f : X ⟶ K.X q)
{n : ℤ}
(h : p + n = q)
:
(fromSingleMk f h).v p q h = CategoryTheory.CategoryStruct.comp (HomologicalComplex.singleObjXSelf (ComplexShape.up ℤ) p X).hom f
theorem
CochainComplex.HomComplex.Cochain.fromSingleMk_v_eq_zero
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasZeroObject C]
{X : C}
{K : CochainComplex C ℤ}
{p q : ℤ}
(f : X ⟶ K.X q)
{n : ℤ}
(h : p + n = q)
(p' q' : ℤ)
(hpq' : p' + n = q')
(hp' : p' ≠ p)
:
theorem
CochainComplex.HomComplex.Cochain.δ_fromSingleMk
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasZeroObject C]
{X : C}
{K : CochainComplex C ℤ}
{p q : ℤ}
(f : X ⟶ K.X q)
{n : ℤ}
(h : p + n = q)
(n' q' : ℤ)
(h' : p + n' = q')
:
noncomputable def
CochainComplex.HomComplex.Cochain.toSingleMk
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasZeroObject C]
{X : C}
{K : CochainComplex C ℤ}
{p q : ℤ}
(f : K.X p ⟶ X)
{n : ℤ}
:
p + n = q → Cochain K ((singleFunctor C q).obj X) n
Constructor for cochains to a single complex.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CochainComplex.HomComplex.Cochain.toSingleMk_zero
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasZeroObject C]
(X : C)
(K : CochainComplex C ℤ)
(p q n : ℤ)
(h : p + n = q)
:
@[simp]
theorem
CochainComplex.HomComplex.Cochain.toSingleMk_v
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasZeroObject C]
{X : C}
{K : CochainComplex C ℤ}
{p q : ℤ}
(f : K.X p ⟶ X)
{n : ℤ}
(h : p + n = q)
:
(toSingleMk f h).v p q h = CategoryTheory.CategoryStruct.comp f (HomologicalComplex.singleObjXSelf (ComplexShape.up ℤ) q X).inv
theorem
CochainComplex.HomComplex.Cochain.toSingleMk_v_eq_zero
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasZeroObject C]
{X : C}
{K : CochainComplex C ℤ}
{p q : ℤ}
(f : K.X p ⟶ X)
{n : ℤ}
(h : p + n = q)
(p' q' : ℤ)
(hpq' : p' + n = q')
(hp' : p' ≠ p)
:
theorem
CochainComplex.HomComplex.Cochain.δ_toSingleMk
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasZeroObject C]
{X : C}
{K : CochainComplex C ℤ}
{p q : ℤ}
(f : K.X p ⟶ X)
{n : ℤ}
(h : p + n = q)
(n' p' : ℤ)
(h' : p' + n' = q)
:
δ n n' (toSingleMk f h) = n'.negOnePow • toSingleMk (CategoryTheory.CategoryStruct.comp (K.d p' p) f) h'
noncomputable def
CochainComplex.HomComplex.Cocycle.fromSingleMk
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasZeroObject C]
{X : C}
{K : CochainComplex C ℤ}
{p q : ℤ}
(f : X ⟶ K.X q)
{n : ℤ}
(h : p + n = q)
(q' : ℤ)
(hq' : q + 1 = q')
(hf : CategoryTheory.CategoryStruct.comp f (K.d q q') = 0)
:
Cocycle ((singleFunctor C p).obj X) K n
Constructor for cocycles from a single complex.
Equations
- CochainComplex.HomComplex.Cocycle.fromSingleMk f h q' hq' hf = CochainComplex.HomComplex.Cocycle.mk (CochainComplex.HomComplex.Cochain.fromSingleMk f h) (n + 1) ⋯ ⋯
Instances For
@[simp]
theorem
CochainComplex.HomComplex.Cocycle.fromSingleMk_coe
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasZeroObject C]
{X : C}
{K : CochainComplex C ℤ}
{p q : ℤ}
(f : X ⟶ K.X q)
{n : ℤ}
(h : p + n = q)
(q' : ℤ)
(hq' : q + 1 = q')
(hf : CategoryTheory.CategoryStruct.comp f (K.d q q') = 0)
:
noncomputable def
CochainComplex.HomComplex.Cocycle.toSingleMk
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasZeroObject C]
{X : C}
{K : CochainComplex C ℤ}
{p q : ℤ}
(f : K.X p ⟶ X)
{n : ℤ}
(h : p + n = q)
(p' : ℤ)
(hp' : p' + 1 = p)
(hf : CategoryTheory.CategoryStruct.comp (K.d p' p) f = 0)
:
Cocycle K ((singleFunctor C q).obj X) n
Constructor for cocycles to a single complex.
Equations
- CochainComplex.HomComplex.Cocycle.toSingleMk f h p' hp' hf = CochainComplex.HomComplex.Cocycle.mk (CochainComplex.HomComplex.Cochain.toSingleMk f h) (n + 1) ⋯ ⋯
Instances For
@[simp]
theorem
CochainComplex.HomComplex.Cocycle.toSingleMk_coe
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasZeroObject C]
{X : C}
{K : CochainComplex C ℤ}
{p q : ℤ}
(f : K.X p ⟶ X)
{n : ℤ}
(h : p + n = q)
(p' : ℤ)
(hp' : p' + 1 = p)
(hf : CategoryTheory.CategoryStruct.comp (K.d p' p) f = 0)
: