Documentation

Mathlib.Algebra.Homology.HomotopyCategory.HomComplexSingle

Cochains from or to single complexes #

We introduce constructors Cochain.fromSingleMk and Cocycle.fromSingleMk for cochains and cocycles from a single complex. We also introduce similar definitions for cochains and cocyles to a single complex.

Constructor for cochains from a single complex.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem CochainComplex.HomComplex.Cochain.fromSingleMk_v_eq_zero {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] {X : C} {K : CochainComplex C } {p q : } (f : X K.X q) {n : } (h : p + n = q) (p' q' : ) (hpq' : p' + n = q') (hp' : p' p) :
    (fromSingleMk f h).v p' q' hpq' = 0

    Constructor for cochains to a single complex.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem CochainComplex.HomComplex.Cochain.toSingleMk_v_eq_zero {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] {X : C} {K : CochainComplex C } {p q : } (f : K.X p X) {n : } (h : p + n = q) (p' q' : ) (hpq' : p' + n = q') (hp' : p' p) :
      (toSingleMk f h).v p' q' hpq' = 0
      noncomputable def CochainComplex.HomComplex.Cocycle.fromSingleMk {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] {X : C} {K : CochainComplex C } {p q : } (f : X K.X q) {n : } (h : p + n = q) (q' : ) (hq' : q + 1 = q') (hf : CategoryTheory.CategoryStruct.comp f (K.d q q') = 0) :
      Cocycle ((singleFunctor C p).obj X) K n

      Constructor for cocycles from a single complex.

      Equations
      Instances For
        @[simp]
        theorem CochainComplex.HomComplex.Cocycle.fromSingleMk_coe {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] {X : C} {K : CochainComplex C } {p q : } (f : X K.X q) {n : } (h : p + n = q) (q' : ) (hq' : q + 1 = q') (hf : CategoryTheory.CategoryStruct.comp f (K.d q q') = 0) :
        (fromSingleMk f h q' hq' hf) = Cochain.fromSingleMk f h
        noncomputable def CochainComplex.HomComplex.Cocycle.toSingleMk {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] {X : C} {K : CochainComplex C } {p q : } (f : K.X p X) {n : } (h : p + n = q) (p' : ) (hp' : p' + 1 = p) (hf : CategoryTheory.CategoryStruct.comp (K.d p' p) f = 0) :
        Cocycle K ((singleFunctor C q).obj X) n

        Constructor for cocycles to a single complex.

        Equations
        Instances For
          @[simp]
          theorem CochainComplex.HomComplex.Cocycle.toSingleMk_coe {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] {X : C} {K : CochainComplex C } {p q : } (f : K.X p X) {n : } (h : p + n = q) (p' : ) (hp' : p' + 1 = p) (hf : CategoryTheory.CategoryStruct.comp (K.d p' p) f = 0) :
          (toSingleMk f h p' hp' hf) = Cochain.toSingleMk f h