The spectral object with values in the homotopy category #
Let C be an additive category. In this file, we show that the
mapping cone defines a spectral object with values in the homotopy
category of ℤ-indexed cochain complexes C that is indexed
by the category CochainComplex C ℤ.
(It follows that to any functor ι ⥤ CochainComplex C ℤ (e.g. a filtered
complex), there is an associated spectral object indexed by ι.)
noncomputable def
HomotopyCategory.composableArrowsFunctor
(C : Type u_1)
[CategoryTheory.Category.{v_1, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasBinaryBiproducts C]
:
The functor ComposableArrows (CochainComplex C ℤ) 1 ⥤ CochainComplex C ℤ which
sends a morphism of cochain complexes to its mapping cone.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
HomotopyCategory.composableArrowsFunctor_obj
(C : Type u_1)
[CategoryTheory.Category.{v_1, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasBinaryBiproducts C]
(f : CategoryTheory.ComposableArrows (CochainComplex C ℤ) 1)
:
@[simp]
theorem
HomotopyCategory.composableArrowsFunctor_map
(C : Type u_1)
[CategoryTheory.Category.{v_1, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasBinaryBiproducts C]
{X✝ Y✝ : CategoryTheory.ComposableArrows (CochainComplex C ℤ) 1}
(φ : X✝ ⟶ Y✝)
:
noncomputable def
HomotopyCategory.spectralObjectMappingCone
(C : Type u_1)
[CategoryTheory.Category.{v_1, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasZeroObject C]
[CategoryTheory.Limits.HasBinaryBiproducts C]
:
The spectral object with values in (HomotopyCategory C (.up ℤ) that
is indexed by CochainComplex C ℤ.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
HomotopyCategory.spectralObjectMappingCone_δ'_app
(C : Type u_1)
[CategoryTheory.Category.{v_1, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasZeroObject C]
[CategoryTheory.Limits.HasBinaryBiproducts C]
(D : CategoryTheory.ComposableArrows (CochainComplex C ℤ) 2)
:
(spectralObjectMappingCone C).δ'.app D = ((quotient C (ComplexShape.up ℤ)).mapTriangle.obj
(CochainComplex.mappingConeCompTriangle
(D.map' 0 1 composableArrowsFunctor._proof_2 spectralObjectMappingCone._proof_2)
(D.map' 1 2 spectralObjectMappingCone._proof_2 spectralObjectMappingCone._proof_3))).mor₃
@[simp]
theorem
HomotopyCategory.spectralObjectMappingCone_ω₁
(C : Type u_1)
[CategoryTheory.Category.{v_1, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasZeroObject C]
[CategoryTheory.Limits.HasBinaryBiproducts C]
:
(spectralObjectMappingCone C).ω₁ = (composableArrowsFunctor C).comp (quotient C (ComplexShape.up ℤ))