Transport left resolutions along equivalences #
If ι : C ⥤ A is equipped with Λ : LeftResolution ι and
ι' : C' ⥤ A' is a functor which corresponds to ι via
equivalences of categories A' ≌ A and C' ≌ C, we
define Λ.transport .. : LeftResolution ι'.
def
CategoryTheory.Abelian.LeftResolution.transport
{A : Type u_1}
{C : Type u_2}
[Category.{u_5, u_2} C]
[Category.{u_6, u_1} A]
{A' : Type u_3}
{C' : Type u_4}
[Category.{u_7, u_4} C']
[Category.{u_8, u_3} A']
{ι : Functor C A}
(Λ : LeftResolution ι)
{ι' : Functor C' A'}
(eA : A' ≌ A)
(eC : C' ≌ C)
(e : ι'.comp eA.functor ≅ eC.functor.comp ι)
:
Transport LeftResolution via equivalences of categories.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
CategoryTheory.Abelian.LeftResolution.ofCompIso
{A : Type u_1}
{C : Type u_2}
[Category.{u_5, u_2} C]
[Category.{u_6, u_1} A]
{C' : Type u_4}
[Category.{u_7, u_4} C']
{ι : Functor C A}
(Λ : LeftResolution ι)
{ι' : Functor C' A}
{G : Functor C C'}
(e : G.comp ι' ≅ ι)
:
If we have an isomorphism e : G ⋙ ι' ≅ ι, then any Λ : LeftResolution ι
induces Λ.ofCompIso e : LeftResolution ι'.
Equations
- One or more equations did not get rendered due to their size.