Extension and restriction of scalars for Lie algebras and Lie modules #
Lie algebras and their representations have a well-behaved theory of extension and restriction of scalars.
Main definitions #
LieAlgebra.ExtendScalars.instLieAlgebra
LieAlgebra.ExtendScalars.instLieModule
LieAlgebra.RestrictScalars.lieAlgebra
Tags #
lie ring, lie algebra, extension of scalars, restriction of scalars, base change
noncomputable instance
LieAlgebra.ExtendScalars.instBracketTensorProduct
(R : Type u_1)
(A : Type u_2)
(L : Type u_3)
(M : Type u_4)
[CommRing R]
[CommRing A]
[Algebra R A]
[LieRing L]
[LieAlgebra R L]
[AddCommGroup M]
[Module R M]
[LieRingModule L M]
[LieModule R L M]
:
Bracket (TensorProduct R A L) (TensorProduct R A M)
Equations
- LieAlgebra.ExtendScalars.instBracketTensorProduct R A L M = { bracket := fun (x : TensorProduct R A L) (m : TensorProduct R A M) => ((LieAlgebra.ExtendScalars.bracket' R A L M) x) m }
@[simp]
theorem
LieAlgebra.ExtendScalars.bracket_tmul
(R : Type u_1)
(A : Type u_2)
(L : Type u_3)
(M : Type u_4)
[CommRing R]
[CommRing A]
[Algebra R A]
[LieRing L]
[LieAlgebra R L]
[AddCommGroup M]
[Module R M]
[LieRingModule L M]
[LieModule R L M]
(s t : A)
(x : L)
(y : M)
:
noncomputable instance
LieAlgebra.ExtendScalars.instLieRing
(R : Type u_1)
(A : Type u_2)
(L : Type u_3)
[CommRing R]
[CommRing A]
[Algebra R A]
[LieRing L]
[LieAlgebra R L]
:
LieRing (TensorProduct R A L)
Equations
- LieAlgebra.ExtendScalars.instLieRing R A L = LieRing.mk ⋯ ⋯ ⋯ ⋯
noncomputable instance
LieAlgebra.ExtendScalars.instLieAlgebra
(R : Type u_1)
(A : Type u_2)
(L : Type u_3)
[CommRing R]
[CommRing A]
[Algebra R A]
[LieRing L]
[LieAlgebra R L]
:
LieAlgebra A (TensorProduct R A L)
Equations
noncomputable instance
LieAlgebra.ExtendScalars.instLieRingModule
(R : Type u_1)
(A : Type u_2)
(L : Type u_3)
(M : Type u_4)
[CommRing R]
[CommRing A]
[Algebra R A]
[LieRing L]
[LieAlgebra R L]
[AddCommGroup M]
[Module R M]
[LieRingModule L M]
[LieModule R L M]
:
LieRingModule (TensorProduct R A L) (TensorProduct R A M)
Equations
- LieAlgebra.ExtendScalars.instLieRingModule R A L M = LieRingModule.mk ⋯ ⋯ ⋯
noncomputable instance
LieAlgebra.ExtendScalars.instLieModule
(R : Type u_1)
(A : Type u_2)
(L : Type u_3)
(M : Type u_4)
[CommRing R]
[CommRing A]
[Algebra R A]
[LieRing L]
[LieAlgebra R L]
[AddCommGroup M]
[Module R M]
[LieRingModule L M]
[LieModule R L M]
:
LieModule A (TensorProduct R A L) (TensorProduct R A M)
Equations
- ⋯ = ⋯
noncomputable instance
LieAlgebra.RestrictScalars.instLieRingRestrictScalars
(R : Type u_1)
(A : Type u_2)
(L : Type u_3)
[h : LieRing L]
:
LieRing (RestrictScalars R A L)
Equations
noncomputable instance
LieAlgebra.RestrictScalars.lieAlgebra
(R : Type u_1)
(A : Type u_2)
(L : Type u_3)
[h : LieRing L]
[CommRing A]
[LieAlgebra A L]
[CommRing R]
[Algebra R A]
:
LieAlgebra R (RestrictScalars R A L)
Equations
@[simp]
theorem
LieModule.toEnd_baseChange
(R : Type u_1)
(A : Type u_2)
(L : Type u_3)
(M : Type u_4)
[CommRing R]
[LieRing L]
[LieAlgebra R L]
[AddCommGroup M]
[Module R M]
[LieRingModule L M]
[LieModule R L M]
[CommRing A]
[Algebra R A]
(x : L)
:
(LieModule.toEnd A (TensorProduct R A L) (TensorProduct R A M)) (1 ⊗ₜ[R] x) = LinearMap.baseChange A ((LieModule.toEnd R L M) x)
noncomputable def
LieSubmodule.baseChange
{R : Type u_1}
(A : Type u_2)
{L : Type u_3}
{M : Type u_4}
[CommRing R]
[LieRing L]
[LieAlgebra R L]
[AddCommGroup M]
[Module R M]
[LieRingModule L M]
[LieModule R L M]
[CommRing A]
[Algebra R A]
(N : LieSubmodule R L M)
:
LieSubmodule A (TensorProduct R A L) (TensorProduct R A M)
If A
is an R
-algebra, any Lie submodule of a Lie module M
with coefficients in R
may be
pushed forward to a Lie submodule of A ⊗ M
with coefficients in A
.
This "base change" operation is also known as "extension of scalars".
Equations
- LieSubmodule.baseChange A N = { toSubmodule := Submodule.baseChange A ↑N, lie_mem := ⋯ }
Instances For
@[simp]
theorem
LieSubmodule.coe_baseChange
(R : Type u_1)
(A : Type u_2)
(L : Type u_3)
(M : Type u_4)
[CommRing R]
[LieRing L]
[LieAlgebra R L]
[AddCommGroup M]
[Module R M]
[LieRingModule L M]
[LieModule R L M]
[CommRing A]
[Algebra R A]
(N : LieSubmodule R L M)
:
↑(LieSubmodule.baseChange A N) = Submodule.baseChange A ↑N
theorem
LieSubmodule.tmul_mem_baseChange_of_mem
{R : Type u_1}
{A : Type u_2}
{L : Type u_3}
{M : Type u_4}
[CommRing R]
[LieRing L]
[LieAlgebra R L]
[AddCommGroup M]
[Module R M]
[LieRingModule L M]
[LieModule R L M]
[CommRing A]
[Algebra R A]
{N : LieSubmodule R L M}
(a : A)
{m : M}
(hm : m ∈ N)
:
a ⊗ₜ[R] m ∈ LieSubmodule.baseChange A N
theorem
LieSubmodule.mem_baseChange_iff
(R : Type u_1)
(A : Type u_2)
(L : Type u_3)
(M : Type u_4)
[CommRing R]
[LieRing L]
[LieAlgebra R L]
[AddCommGroup M]
[Module R M]
[LieRingModule L M]
[LieModule R L M]
[CommRing A]
[Algebra R A]
{N : LieSubmodule R L M}
{m : TensorProduct R A M}
:
m ∈ LieSubmodule.baseChange A N ↔ m ∈ Submodule.span A ↑(Submodule.map ((TensorProduct.mk R A M) 1) ↑N)
@[simp]
theorem
LieSubmodule.baseChange_bot
(R : Type u_1)
(A : Type u_2)
(L : Type u_3)
(M : Type u_4)
[CommRing R]
[LieRing L]
[LieAlgebra R L]
[AddCommGroup M]
[Module R M]
[LieRingModule L M]
[LieModule R L M]
[CommRing A]
[Algebra R A]
:
@[simp]
theorem
LieSubmodule.baseChange_top
(R : Type u_1)
(A : Type u_2)
(L : Type u_3)
(M : Type u_4)
[CommRing R]
[LieRing L]
[LieAlgebra R L]
[AddCommGroup M]
[Module R M]
[LieRingModule L M]
[LieModule R L M]
[CommRing A]
[Algebra R A]
:
theorem
LieSubmodule.lie_baseChange
(R : Type u_1)
(A : Type u_2)
(L : Type u_3)
(M : Type u_4)
[CommRing R]
[LieRing L]
[LieAlgebra R L]
[AddCommGroup M]
[Module R M]
[LieRingModule L M]
[LieModule R L M]
[CommRing A]
[Algebra R A]
{I : LieIdeal R L}
{N : LieSubmodule R L M}
: