Documentation

Mathlib.Algebra.Lie.Extension

Extensions of Lie algebras #

This file defines extensions of Lie algebras, given by short exact sequences of Lie algebra homomorphisms. They are implemented in two ways: IsExtension is a Prop-valued class taking two homomorphisms as parameters, and Extension is a structure that includes the middle Lie algebra.

Main definitions #

TODO #

References #

class LieAlgebra.IsExtension {R : Type u_1} {N : Type u_2} {L : Type u_3} {M : Type u_4} [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing N] [LieAlgebra R N] [LieRing M] [LieAlgebra R M] (i : N →ₗ⁅R L) (p : L →ₗ⁅R M) :

A sequence of two Lie algebra homomorphisms is an extension if it is short exact.

Instances
    structure LieAlgebra.Extension (R : Type u_1) (N : Type u_2) (M : Type u_4) [CommRing R] [LieRing N] [LieAlgebra R N] [LieRing M] [LieAlgebra R M] :
    Type (max (max (max u_1 u_2) u_4) (u_5 + 1))

    The type of all Lie extensions of M by N. That is, short exact sequences of R-Lie algebra homomorphisms 0 → N → L → M → 0 where R, M, and N are fixed.

    • L : Type u_5

      The middle object in the sequence.

    • instLieRing : LieRing self.L

      L is a Lie ring.

    • instLieAlgebra : LieAlgebra R self.L

      L is a Lie algebra over R.

    • incl : N →ₗ⁅R self.L

      The inclusion homomorphism N →ₗ⁅R⁆ L

    • proj : self.L →ₗ⁅R M

      The projection homomorphism L →ₗ⁅R⁆ M

    • IsExtension : LieAlgebra.IsExtension self.incl self.proj
    Instances For
      def LieAlgebra.IsExtension.extension {R : Type u_1} {N : Type u_2} {L : Type u_3} {M : Type u_4} [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing N] [LieAlgebra R N] [LieRing M] [LieAlgebra R M] {i : N →ₗ⁅R L} {p : L →ₗ⁅R M} (h : IsExtension i p) :
      Extension R N M

      The bundled LieAlgebra.Extension corresponding to LieAlgebra.IsExtension

      Equations
      • h.extension = { L := L, instLieRing := inst✝⁵, instLieAlgebra := inst✝⁴, incl := i, proj := p, IsExtension := h }
      Instances For
        @[simp]
        theorem LieAlgebra.IsExtension.extension_incl {R : Type u_1} {N : Type u_2} {L : Type u_3} {M : Type u_4} [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing N] [LieAlgebra R N] [LieRing M] [LieAlgebra R M] {i : N →ₗ⁅R L} {p : L →ₗ⁅R M} (h : IsExtension i p) :
        h.extension.incl = i
        @[simp]
        theorem LieAlgebra.IsExtension.extension_instLieRing {R : Type u_1} {N : Type u_2} {L : Type u_3} {M : Type u_4} [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing N] [LieAlgebra R N] [LieRing M] [LieAlgebra R M] {i : N →ₗ⁅R L} {p : L →ₗ⁅R M} (h : IsExtension i p) :
        h.extension.instLieRing = inst✝
        @[simp]
        theorem LieAlgebra.IsExtension.extension_instLieAlgebra {R : Type u_1} {N : Type u_2} {L : Type u_3} {M : Type u_4} [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing N] [LieAlgebra R N] [LieRing M] [LieAlgebra R M] {i : N →ₗ⁅R L} {p : L →ₗ⁅R M} (h : IsExtension i p) :
        h.extension.instLieAlgebra = inst✝
        @[simp]
        theorem LieAlgebra.IsExtension.extension_proj {R : Type u_1} {N : Type u_2} {L : Type u_3} {M : Type u_4} [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing N] [LieAlgebra R N] [LieRing M] [LieAlgebra R M] {i : N →ₗ⁅R L} {p : L →ₗ⁅R M} (h : IsExtension i p) :
        h.extension.proj = p
        @[simp]
        theorem LieAlgebra.IsExtension.extension_L {R : Type u_1} {N : Type u_2} {L : Type u_3} {M : Type u_4} [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing N] [LieAlgebra R N] [LieRing M] [LieAlgebra R M] {i : N →ₗ⁅R L} {p : L →ₗ⁅R M} (h : IsExtension i p) :
        h.extension.L = L
        theorem LieAlgebra.isExtension_of_surjective {R : Type u_1} {L : Type u_3} {M : Type u_4} [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing M] [LieAlgebra R M] (f : L →ₗ⁅R M) (hf : Function.Surjective f) :
        IsExtension f.ker.incl f

        A surjective Lie algebra homomorphism yields an extension.