Quotients of Lie algebras and Lie modules #
Given a Lie submodule of a Lie module, the quotient carries a natural Lie module structure. In the special case that the Lie module is the Lie algebra itself via the adjoint action, the submodule is a Lie ideal and the quotient carries a natural Lie algebra structure.
We define these quotient structures here. A notable omission at the time of writing (February 2021) is a statement and proof of the universal property of these quotients.
Main definitions #
Tags #
lie algebra, quotient
The quotient of a Lie module by a Lie submodule. It is a Lie module.
Equations
- LieSubmodule.instHasQuotient = { quotient' := fun (N : LieSubmodule R L M) => M ⧸ ↑N }
Equations
Equations
Equations
- LieSubmodule.Quotient.inhabited = { default := 0 }
Map sending an element of M
to the corresponding element of M/N
, when N
is a
lie_submodule of the lie_module N
.
Instances For
Given a Lie module M
over a Lie algebra L
, together with a Lie submodule N ⊆ M
, there
is a natural linear map from L
to the endomorphisms of M
leaving N
invariant.
Equations
- LieSubmodule.Quotient.lieSubmoduleInvariant = LinearMap.codRestrict ((↑N).compatibleMaps ↑N) ↑(LieModule.toEnd R L M) ⋯
Instances For
Given a Lie module M
over a Lie algebra L
, together with a Lie submodule N ⊆ M
, there
is a natural Lie algebra morphism from L
to the linear endomorphism of the quotient M/N
.
Equations
- LieSubmodule.Quotient.actionAsEndoMap N = { toLinearMap := (↑N).mapQLinear ↑N ∘ₗ LieSubmodule.Quotient.lieSubmoduleInvariant, map_lie' := ⋯ }
Instances For
Given a Lie module M
over a Lie algebra L
, together with a Lie submodule N ⊆ M
, there is
a natural bracket action of L
on the quotient M/N
.
Equations
- LieSubmodule.Quotient.actionAsEndoMapBracket N = { bracket := fun (x : L) (n : M ⧸ N) => ((LieSubmodule.Quotient.actionAsEndoMap N) x) n }
Equations
The quotient of a Lie module by a Lie submodule, is a Lie module.
Equations
- LieSubmodule.Quotient.lieQuotientHasBracket I = { bracket := fun (x y : L ⧸ I) => Quotient.liftOn₂' x y (fun (x' y' : L) => LieSubmodule.Quotient.mk ⁅x', y'⁆) ⋯ }
Equations
Equations
LieSubmodule.Quotient.mk
as a LieModuleHom
.
Equations
- LieSubmodule.Quotient.mk' N = { toFun := LieSubmodule.Quotient.mk, map_add' := ⋯, map_smul' := ⋯, map_lie' := ⋯ }
Instances For
Two LieModuleHom
s from a quotient lie module are equal if their compositions with
LieSubmodule.Quotient.mk'
are equal.
See note [partially-applied ext lemmas].
The first isomorphism theorem for morphisms of Lie algebras.
Equations
- f.quotKerEquivRange = { toFun := ⇑(↑f).quotKerEquivRange, map_add' := ⋯, map_smul' := ⋯, map_lie' := ⋯, invFun := (↑f).quotKerEquivRange.invFun, left_inv := ⋯, right_inv := ⋯ }