Documentation

Mathlib.Algebra.Lie.Quotient

Quotients of Lie algebras and Lie modules #

Given a Lie submodule of a Lie module, the quotient carries a natural Lie module structure. In the special case that the Lie module is the Lie algebra itself via the adjoint action, the submodule is a Lie ideal and the quotient carries a natural Lie algebra structure.

We define these quotient structures here. A notable omission at the time of writing (February 2021) is a statement and proof of the universal property of these quotients.

Main definitions #

Tags #

lie algebra, quotient

instance LieSubmodule.instHasQuotient {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] :

The quotient of a Lie module by a Lie submodule. It is a Lie module.

Equations
instance LieSubmodule.Quotient.module' {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] {N : LieSubmodule R L M} {S : Type u_1} [Semiring S] [SMul S R] [Module S M] [IsScalarTower S R M] :
Module S (M N)
Equations
instance LieSubmodule.Quotient.isCentralScalar {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] {N : LieSubmodule R L M} {S : Type u_1} [Semiring S] [SMul S R] [Module S M] [IsScalarTower S R M] [SMul Sᵐᵒᵖ R] [Module Sᵐᵒᵖ M] [IsScalarTower Sᵐᵒᵖ R M] [IsCentralScalar S M] :
instance LieSubmodule.Quotient.inhabited {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] {N : LieSubmodule R L M} :
Equations
@[reducible, inline]
abbrev LieSubmodule.Quotient.mk {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] {N : LieSubmodule R L M} :
MM N

Map sending an element of M to the corresponding element of M/N, when N is a lie_submodule of the lie_module N.

Equations
Instances For
    @[simp]
    theorem LieSubmodule.Quotient.mk_eq_zero' {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] {N : LieSubmodule R L M} {m : M} :
    mk m = 0 m N
    theorem LieSubmodule.Quotient.is_quotient_mk {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] {N : LieSubmodule R L M} (m : M) :
    def LieSubmodule.Quotient.lieSubmoduleInvariant {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] {N : LieSubmodule R L M} [LieAlgebra R L] [LieModule R L M] :
    L →ₗ[R] ((↑N).compatibleMaps N)

    Given a Lie module M over a Lie algebra L, together with a Lie submodule N ⊆ M, there is a natural linear map from L to the endomorphisms of M leaving N invariant.

    Equations
    Instances For
      def LieSubmodule.Quotient.actionAsEndoMap {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) [LieAlgebra R L] [LieModule R L M] :

      Given a Lie module M over a Lie algebra L, together with a Lie submodule N ⊆ M, there is a natural Lie algebra morphism from L to the linear endomorphism of the quotient M/N.

      Equations
      Instances For
        instance LieSubmodule.Quotient.actionAsEndoMapBracket {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) [LieAlgebra R L] [LieModule R L M] :
        Bracket L (M N)

        Given a Lie module M over a Lie algebra L, together with a Lie submodule N ⊆ M, there is a natural bracket action of L on the quotient M/N.

        Equations
        instance LieSubmodule.Quotient.lieQuotientLieModule {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) [LieAlgebra R L] [LieModule R L M] :
        LieModule R L (M N)

        The quotient of a Lie module by a Lie submodule, is a Lie module.

        instance LieSubmodule.Quotient.lieQuotientHasBracket {R : Type u} {L : Type v} [CommRing R] [LieRing L] [LieAlgebra R L] (I : LieIdeal R L) :
        Bracket (L I) (L I)
        Equations
        @[simp]
        theorem LieSubmodule.Quotient.mk_bracket {R : Type u} {L : Type v} [CommRing R] [LieRing L] [LieAlgebra R L] (I : LieIdeal R L) (x y : L) :
        def LieSubmodule.Quotient.mk' {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) [LieAlgebra R L] [LieModule R L M] :

        LieSubmodule.Quotient.mk as a LieModuleHom.

        Equations
        Instances For
          @[simp]
          theorem LieSubmodule.Quotient.mk'_apply {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) [LieAlgebra R L] [LieModule R L M] (a✝ : M) :
          (mk' N) a✝ = mk a✝
          @[simp]
          theorem LieSubmodule.Quotient.surjective_mk' {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) [LieAlgebra R L] [LieModule R L M] :
          @[simp]
          theorem LieSubmodule.Quotient.range_mk' {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) [LieAlgebra R L] [LieModule R L M] :
          (mk' N).range =
          instance LieSubmodule.Quotient.isNoetherian {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) [IsNoetherian R M] :
          theorem LieSubmodule.Quotient.mk_eq_zero {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) [LieAlgebra R L] [LieModule R L M] {m : M} :
          (mk' N) m = 0 m N
          @[simp]
          theorem LieSubmodule.Quotient.mk'_ker {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) [LieAlgebra R L] [LieModule R L M] :
          (mk' N).ker = N
          @[simp]
          theorem LieSubmodule.Quotient.map_mk'_eq_bot_le {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N N' : LieSubmodule R L M) [LieAlgebra R L] [LieModule R L M] :
          map (mk' N) N' = N' N
          theorem LieSubmodule.Quotient.lieModuleHom_ext {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) [LieAlgebra R L] [LieModule R L M] ⦃f g : M N →ₗ⁅R,L M (h : f.comp (mk' N) = g.comp (mk' N)) :
          f = g

          Two LieModuleHoms from a quotient lie module are equal if their compositions with LieSubmodule.Quotient.mk' are equal.

          See note [partially-applied ext lemmas].

          theorem LieSubmodule.Quotient.toEnd_comp_mk' {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) [LieAlgebra R L] [LieModule R L M] (x : L) :
          (LieModule.toEnd R L (M N)) x ∘ₗ (mk' N) = (mk' N) ∘ₗ (LieModule.toEnd R L M) x
          noncomputable def LieHom.quotKerEquivRange {R : Type u_1} {L : Type u_2} {L' : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing L'] [LieAlgebra R L'] (f : L →ₗ⁅R L') :
          (L f.ker) ≃ₗ⁅R f.range

          The first isomorphism theorem for morphisms of Lie algebras.

          Equations
          • f.quotKerEquivRange = { toFun := (↑f).quotKerEquivRange, map_add' := , map_smul' := , map_lie' := , invFun := (↑f).quotKerEquivRange.invFun, left_inv := , right_inv := }
          Instances For
            @[simp]
            theorem LieHom.quotKerEquivRange_invFun {R : Type u_1} {L : Type u_2} {L' : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing L'] [LieAlgebra R L'] (f : L →ₗ⁅R L') (a✝ : (LinearMap.range f)) :
            f.quotKerEquivRange.invFun a✝ = (↑f).quotKerEquivRange.invFun a✝
            @[simp]
            theorem LieHom.quotKerEquivRange_toFun {R : Type u_1} {L : Type u_2} {L' : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing L'] [LieAlgebra R L'] (f : L →ₗ⁅R L') (a : L LinearMap.ker f) :
            f.quotKerEquivRange a = (↑f).quotKerEquivRange a