Lemmas about semisimple Lie algebras #
This file is a home for lemmas about semisimple and reductive Lie algebras.
Main definitions / results: #
LieAlgebra.hasCentralRadical_and_of_isIrreducible_of_isFaithful
: a finite-dimensional Lie algebra with a irreducible faithful finite-dimensional representation is reductive.LieAlgebra.hasTrivialRadical_and_of_isIrreducible_of_isFaithful
: a finite-dimensional Lie algebra with a irreducible faithful finite-dimensional trace-free representation is semisimple.
## TODO
- It appears that the lemmas in this file may hold for any principal ideal domain (of
characteristic zero) instead of a field. The plan would be to define the nilradical of a Lie
algebra (currently missing) and use it with
LieModule.exists_nontrivial_weightSpace_of_isNilpotent
instead of using the solvable radical withLieModule.exists_nontrivial_weightSpace_of_isSolvable
, as below. The conclusion ofLieAlgebra.hasCentralRadical_and_of_isIrreducible_of_isFaithful
would then make a statement that the nilradical vanishes and one would prove elsewhere that vanishing nilradical is equivalent toHasCentralRadical
.
theorem
LieAlgebra.hasCentralRadical_and_of_isIrreducible_of_isFaithful
(k : Type u_1)
(L : Type u_2)
(M : Type u_3)
[Field k]
[CharZero k]
[LieRing L]
[LieAlgebra k L]
[Module.Finite k L]
[AddCommGroup M]
[Module k M]
[LieRingModule L M]
[LieModule k L M]
[Module.Finite k M]
[LieModule.IsIrreducible k L M]
[LieModule.IsFaithful k L M]
[LieModule.IsTriangularizable k L M]
:
HasCentralRadical k L ∧ ∀ (x : L), x ∈ center k L ↔ (LieModule.toEnd k L M) x ∈ Submodule.span k {LinearMap.id}
theorem
LieAlgebra.hasTrivialRadical_and_of_isIrreducible_of_isFaithful
(k : Type u_1)
(L : Type u_2)
(M : Type u_3)
[Field k]
[CharZero k]
[LieRing L]
[LieAlgebra k L]
[Module.Finite k L]
[AddCommGroup M]
[Module k M]
[LieRingModule L M]
[LieModule k L M]
[Module.Finite k M]
[LieModule.IsIrreducible k L M]
[LieModule.IsFaithful k L M]
[LieModule.IsTriangularizable k L M]
(h : ∀ (x : L), (LinearMap.trace k M) ((LieModule.toEnd k L M) x) = 0)
: