Lemmas about semisimple Lie algebras #
This file is a home for lemmas about semisimple and reductive Lie algebras.
Main definitions / results: #
LieAlgebra.hasCentralRadical_and_of_isIrreducible_of_isFaithful
: a finite-dimensional Lie algebra with a irreducible faithful finite-dimensional representation is reductive.LieAlgebra.hasTrivialRadical_of_isIrreducible_of_isFaithful
: a finite-dimensional Lie algebra with a irreducible faithful finite-dimensional trace-free representation is semisimple.
## TODO
- Introduce a
Prop
-valued typeclassLieModule.IsTracefree
stating(toEnd R L M).range ≤ LieAlgebra.derivedSeries R (Module.End R M) 1
, provef ∈ LieAlgebra.derivedSeries k (Module.End k V) 1 ↔ LinearMap.trace k _ f = 0
, and restateLieAlgebra.hasTrivialRadical_of_isIrreducible_of_isFaithful
usingLieModule.IsTracefree
.
theorem
LieAlgebra.hasCentralRadical_and_of_isIrreducible_of_isFaithful
(k : Type u_1)
(L : Type u_2)
(M : Type u_3)
[Field k]
[CharZero k]
[LieRing L]
[LieAlgebra k L]
[Module.Finite k L]
[AddCommGroup M]
[Module k M]
[LieRingModule L M]
[LieModule k L M]
[Module.Finite k M]
[LieModule.IsIrreducible k L M]
[LieModule.IsFaithful k L M]
[LieModule.IsTriangularizable k L M]
:
HasCentralRadical k L ∧ ∀ (x : L), x ∈ center k L ↔ (LieModule.toEnd k L M) x ∈ Submodule.span k {LinearMap.id}
theorem
LieAlgebra.hasTrivialRadical_of_isIrreducible_of_isFaithful
(k : Type u_1)
(L : Type u_2)
(M : Type u_3)
[Field k]
[CharZero k]
[LieRing L]
[LieAlgebra k L]
[Module.Finite k L]
[AddCommGroup M]
[Module k M]
[LieRingModule L M]
[LieModule k L M]
[Module.Finite k M]
[LieModule.IsIrreducible k L M]
[LieModule.IsFaithful k L M]
[LieModule.IsTriangularizable k L M]
(h : ∀ (x : L), (LinearMap.trace k M) ((LieModule.toEnd k L M) x) = 0)
:
theorem
LieAlgebra.trace_toEnd_eq_zero
{L : Type u_2}
{M : Type u_3}
[LieRing L]
[AddCommGroup M]
[LieRingModule L M]
{R : Type u_4}
[CommRing R]
[LieAlgebra R L]
[Module R M]
[LieModule R L M]
{s : Set L}
(hs : ∀ x ∈ s, (LinearMap.trace R M) ((LieModule.toEnd R L M) x) = 0)
{x : L}
(hx : x ∈ LieSubalgebra.lieSpan R L s)
: