Localization of Submodules #
Results about localizations of submodules and quotient modules are provided in this file.
Main results #
Submodule.localized
: The localization of anR
-submodule ofM
atp
viewed as anRₚ
-submodule ofMₚ
. A direct consequence of this is thatRₚ
is flat overR, see
IsLocalization.flat`.Submodule.toLocalized
: The localization map of a submoduleM' →ₗ[R] M'.localized p
.Submodule.toLocalizedQuotient
: The localization map of a quotient moduleM ⧸ M' →ₗ[R] LocalizedModule p M ⧸ M'.localized p
.
TODO #
- Statements regarding the exactness of localization.
Let N
be a localization of an R
-module M
at p
.
This is the localization of an R
-submodule of M
viewed as an R
-submodule of N
.
Equations
- Submodule.localized₀ p f M' = { carrier := {x : N | ∃ m ∈ M', ∃ (s : ↥p), IsLocalizedModule.mk' f m s = x}, add_mem' := ⋯, zero_mem' := ⋯, smul_mem' := ⋯ }
Instances For
Let S
be the localization of R
at p
and N
be a localization of M
at p
.
This is the localization of an R
-submodule of M
viewed as an S
-submodule of N
.
Equations
- Submodule.localized' S p f M' = { toAddSubmonoid := (Submodule.localized₀ p f M').toAddSubmonoid, smul_mem' := ⋯ }
Instances For
localized₀
is the same as localized'
considered as a submodule over the base ring.
The localization of an R
-submodule of M
at p
viewed as an Rₚ
-submodule of Mₚ
.
Equations
- Submodule.localized p M' = Submodule.localized' (Localization p) p (LocalizedModule.mkLinearMap p M) M'
Instances For
The localization map of a submodule.
Equations
- Submodule.toLocalized₀ p f M' = f.restrict ⋯
Instances For
The localization map of a submodule.
Equations
- Submodule.toLocalized' S p f M' = Submodule.toLocalized₀ p f M'
Instances For
The localization map of a submodule.
Equations
- Submodule.toLocalized p M' = Submodule.toLocalized' (Localization p) p (LocalizedModule.mkLinearMap p M) M'
Instances For
The localization map of a quotient module.
Equations
- Submodule.toLocalizedQuotient' S p f M' = M'.mapQ (Submodule.restrictScalars R (Submodule.localized' S p f M')) f ⋯
Instances For
The localization map of a quotient module.
Equations
Instances For
The canonical map from the kernel of g
to the kernel of g
localized at a submonoid.
This is a localization map by LinearMap.toKerLocalized_isLocalizedModule
.
Equations
- LinearMap.toKerIsLocalized p f f' g = f.restrict ⋯
Instances For
The canonical map to the kernel of the localization of g
is localizing.
In other words, localization commutes with kernels.
Localization commutes with ranges.