Presentation of free modules #
A module is free iff it admits a presentation with generators but no relation,
see Module.free_iff_exists_presentation
.
noncomputable def
Module.Relations.solutionFinsupp
{A : Type u}
[Ring A]
(relations : Relations A)
[IsEmpty relations.R]
:
relations.Solution (relations.G →₀ A)
If relations : Relations A
involved no relation, then it has an obvious
solution in the module relations.G →₀ A
.
Equations
- relations.solutionFinsupp = { var := fun (g : relations.G) => Finsupp.single g 1, linearCombination_var_relation := ⋯ }
Instances For
@[simp]
theorem
Module.Relations.solutionFinsupp_var
{A : Type u}
[Ring A]
(relations : Relations A)
[IsEmpty relations.R]
(g : relations.G)
:
relations.solutionFinsupp.var g = Finsupp.single g 1
noncomputable def
Module.Relations.solutionFinsupp.isPresentationCore
{A : Type u}
[Ring A]
(relations : Relations A)
[IsEmpty relations.R]
:
relations.solutionFinsupp.IsPresentationCore
If relations : Relations A
involves no relations ([IsEmpty relations.R]
),
then the free module relations.G →₀ A
satisfies the universal property of the
corresponding module defined by generators (and relations).
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Module.Relations.Solution.IsPresentation.free
{A : Type u}
[Ring A]
{relations : Relations A}
(M : Type v)
[AddCommGroup M]
[Module A M]
[IsEmpty relations.R]
{solution : relations.Solution M}
(h : solution.IsPresentation)
:
Free A M
noncomputable def
Module.presentationFinsupp
(A : Type u)
[Ring A]
(G : Type w₀)
:
Presentation A (G →₀ A)
The presentation of the A
-module G →₀ A
with generators indexed by G
,
and no relation. (Note that there is an auxiliary universe parameter w₁
for the
empty type R
.)
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
Module.presentationFinsupp_G
(A : Type u)
[Ring A]
(G : Type w₀)
:
(presentationFinsupp A G).G = G
@[simp]
theorem
Module.presentationFinsupp_var
(A : Type u)
[Ring A]
(G : Type w₀)
(g :
{ G := G, R := PEmpty.{w₁ + 1},
relation := fun (r : PEmpty.{w₁ + 1}) => PEmpty.casesOn (fun (x : PEmpty.{w₁ + 1}) => G →₀ A) r }.G)
:
(presentationFinsupp A G).var g = Finsupp.single g 1
@[simp]
theorem
Module.presentationFinsupp_R
(A : Type u)
[Ring A]
(G : Type w₀)
:
(presentationFinsupp A G).R = PEmpty.{w₁ + 1}
theorem
Module.free_iff_exists_presentation
(A : Type u)
[Ring A]
(M : Type v)
[AddCommGroup M]
[Module A M]
:
Free A M ↔ ∃ (p : Presentation A M), IsEmpty p.R