Convergence of p-series on lattices #
Let E be a finite dimensional normed ℝ-space, and L a discrete subgroup of E of rank d.
We show that ∑ z ∈ L, ‖z - x‖ʳ is convergent for r < -d.
Main results #
ZLattice.summable_norm_rpow:∑ z ∈ L, ‖z‖ʳconverges whenr < -d.ZLattice.summable_norm_sub_rpow:∑ z ∈ L, ‖z - x‖ʳconverges whenr < -d.ZLattice.tsum_norm_rpow_le:∑ z ∈ L, ‖z‖ʳ ≤ Aʳ * ∑ k : ℕ, kᵈ⁺ʳ⁻¹for someA > 0depending only onL.
theorem
ZLattice.exists_forall_abs_repr_le_norm
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
{L : Submodule ℤ E}
[DiscreteTopology ↥L]
{ι : Type u_2}
(b : Module.Basis ι ℤ ↥L)
:
def
ZLattice.normBound
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
{L : Submodule ℤ E}
[DiscreteTopology ↥L]
{ι : Type u_3}
(b : Module.Basis ι ℤ ↥L)
:
Given a basis of a (possibly not full rank) ℤ-lattice, there exists a ε > 0 such that
|b.repr x i| < n for all ‖x‖ < n * ε (i.e. b.repr x i = O(x) depending only on b).
This is an arbitrary choice of such an ε.
Equations
Instances For
theorem
ZLattice.normBound_pos
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
{L : Submodule ℤ E}
[DiscreteTopology ↥L]
{ι : Type u_3}
(b : Module.Basis ι ℤ ↥L)
:
theorem
ZLattice.normBound_spec
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
{L : Submodule ℤ E}
[DiscreteTopology ↥L]
{ι : Type u_3}
(b : Module.Basis ι ℤ ↥L)
(x : ↥L)
(i : ι)
:
theorem
ZLattice.abs_repr_le
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
{L : Submodule ℤ E}
[DiscreteTopology ↥L]
{ι : Type u_3}
(b : Module.Basis ι ℤ ↥L)
(x : ↥L)
(i : ι)
:
theorem
ZLattice.abs_repr_lt_of_norm_lt
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
{L : Submodule ℤ E}
[DiscreteTopology ↥L]
{ι : Type u_3}
(b : Module.Basis ι ℤ ↥L)
(x : ↥L)
(n : ℕ)
(hxn : ‖x‖ < normBound b * ↑n)
(i : ι)
:
theorem
ZLattice.le_norm_of_le_abs_repr
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
{L : Submodule ℤ E}
[DiscreteTopology ↥L]
{ι : Type u_3}
(b : Module.Basis ι ℤ ↥L)
(x : ↥L)
(n : ℕ)
(i : ι)
(hi : ↑n ≤ |(b.repr x) i|)
:
theorem
ZLattice.sum_piFinset_Icc_rpow_le
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
{L : Submodule ℤ E}
[DiscreteTopology ↥L]
{ι : Type u_3}
[Fintype ι]
[DecidableEq ι]
(b : Module.Basis ι ℤ ↥L)
{d : ℕ}
(hd : d = Fintype.card ι)
(n : ℕ)
(r : ℝ)
(hr : r < -↑d)
:
theorem
ZLattice.exists_finsetSum_norm_rpow_le_tsum
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
(L : Submodule ℤ E)
[DiscreteTopology ↥L]
:
def
ZLattice.tsumNormRPowBound
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
(L : Submodule ℤ E)
[DiscreteTopology ↥L]
:
Let L be a lattice with (possibly non-full) rank d, and r : ℝ such that d < r.
Then ∑ z ∈ L, ‖z‖⁻ʳ ≤ A⁻ʳ * ∑ k : ℕ, kᵈ⁻ʳ⁻¹ for some A > 0 depending only on L.
This is an arbitrary choice of A. See ZLattice.tsum_norm_rpow_le.
Equations
Instances For
theorem
ZLattice.tsumNormRPowBound_pos
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
(L : Submodule ℤ E)
[DiscreteTopology ↥L]
:
theorem
ZLattice.tsumNormRPowBound_spec
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
(L : Submodule ℤ E)
[DiscreteTopology ↥L]
(r : ℝ)
(h : r < -↑(Module.finrank ℤ ↥L))
(s : Finset ↥L)
:
theorem
ZLattice.summable_norm_rpow
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
(L : Submodule ℤ E)
[DiscreteTopology ↥L]
(r : ℝ)
(hr : r < -↑(Module.finrank ℤ ↥L))
:
If L is a ℤ-lattice with rank d in E, then ∑ z ∈ L, ‖z‖ʳ converges when r < -d.
theorem
ZLattice.tsum_norm_rpow_le
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
(L : Submodule ℤ E)
[DiscreteTopology ↥L]
(r : ℝ)
(hr : r < -↑(Module.finrank ℤ ↥L))
:
∑ z ∈ L, ‖z‖⁻ʳ ≤ A⁻ʳ * ∑ k : ℕ, kᵈ⁻ʳ⁻¹ for some A > 0 depending only on L.
theorem
ZLattice.summable_norm_sub_rpow
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
(L : Submodule ℤ E)
[DiscreteTopology ↥L]
(r : ℝ)
(hr : r < -↑(Module.finrank ℤ ↥L))
(x : E)
:
theorem
ZLattice.summable_norm_sub_zpow
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
(L : Submodule ℤ E)
[DiscreteTopology ↥L]
(n : ℤ)
(hn : n < -↑(Module.finrank ℤ ↥L))
(x : E)
:
theorem
ZLattice.summable_norm_zpow
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
(L : Submodule ℤ E)
[DiscreteTopology ↥L]
(n : ℤ)
(hn : n < -↑(Module.finrank ℤ ↥L))
:
theorem
ZLattice.summable_norm_sub_inv_pow
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
(L : Submodule ℤ E)
[DiscreteTopology ↥L]
(n : ℕ)
(hn : Module.finrank ℤ ↥L < n)
(x : E)
:
theorem
ZLattice.summable_norm_pow_inv
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
(L : Submodule ℤ E)
[DiscreteTopology ↥L]
(n : ℕ)
(hn : Module.finrank ℤ ↥L < n)
: