Documentation

Mathlib.Algebra.Module.ZLattice.Summable

Convergence of p-series on lattices #

Let E be a finite dimensional normed -space, and L a discrete subgroup of E of rank d. We show that ∑ z ∈ L, ‖z - x‖ʳ is convergent for r < -d.

Main results #

theorem ZLattice.exists_forall_abs_repr_le_norm {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [FiniteDimensional E] {L : Submodule E} [DiscreteTopology L] {ι : Type u_2} (b : Module.Basis ι L) :
∃ (ε : ), 0 < ε ∀ (x : L) (i : ι), ε * |(b.repr x) i| x

Given a basis of a (possibly not full rank) -lattice, there exists a ε > 0 such that |b.repr x i| < n for all ‖x‖ < n * ε (i.e. b.repr x i = O(x) depending only on b). This is an arbitrary choice of such an ε.

Equations
Instances For
    theorem ZLattice.normBound_spec {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [FiniteDimensional E] {L : Submodule E} [DiscreteTopology L] {ι : Type u_3} (b : Module.Basis ι L) (x : L) (i : ι) :
    normBound b * |(b.repr x) i| x
    theorem ZLattice.abs_repr_le {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [FiniteDimensional E] {L : Submodule E} [DiscreteTopology L] {ι : Type u_3} (b : Module.Basis ι L) (x : L) (i : ι) :
    |(b.repr x) i| (normBound b)⁻¹ * x
    theorem ZLattice.abs_repr_lt_of_norm_lt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [FiniteDimensional E] {L : Submodule E} [DiscreteTopology L] {ι : Type u_3} (b : Module.Basis ι L) (x : L) (n : ) (hxn : x < normBound b * n) (i : ι) :
    |(b.repr x) i| < n
    theorem ZLattice.le_norm_of_le_abs_repr {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [FiniteDimensional E] {L : Submodule E} [DiscreteTopology L] {ι : Type u_3} (b : Module.Basis ι L) (x : L) (n : ) (i : ι) (hi : n |(b.repr x) i|) :
    theorem ZLattice.sum_piFinset_Icc_rpow_le {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [FiniteDimensional E] {L : Submodule E} [DiscreteTopology L] {ι : Type u_3} [Fintype ι] [DecidableEq ι] (b : Module.Basis ι L) {d : } (hd : d = Fintype.card ι) (n : ) (r : ) (hr : r < -d) :
    pFintype.piFinset fun (x : ι) => Finset.Icc (-n) n, i : ι, p i b i ^ r 2 * d * 3 ^ (d - 1) * normBound b ^ r * ∑' (k : ), k ^ (d - 1 + r)
    theorem ZLattice.exists_finsetSum_norm_rpow_le_tsum {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [FiniteDimensional E] (L : Submodule E) [DiscreteTopology L] :
    A > 0, r < -(Module.finrank L), ∀ (s : Finset L), zs, z ^ r A ^ r * ∑' (k : ), k ^ ((Module.finrank L) - 1 + r)

    Let L be a lattice with (possibly non-full) rank d, and r : ℝ such that d < r. Then ∑ z ∈ L, ‖z‖⁻ʳ ≤ A⁻ʳ * ∑ k : ℕ, kᵈ⁻ʳ⁻¹ for some A > 0 depending only on L. This is an arbitrary choice of A. See ZLattice.tsum_norm_rpow_le.

    Equations
    Instances For
      theorem ZLattice.tsumNormRPowBound_spec {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [FiniteDimensional E] (L : Submodule E) [DiscreteTopology L] (r : ) (h : r < -(Module.finrank L)) (s : Finset L) :
      zs, z ^ r tsumNormRPowBound L ^ r * ∑' (k : ), k ^ ((Module.finrank L) - 1 + r)
      theorem ZLattice.summable_norm_rpow {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [FiniteDimensional E] (L : Submodule E) [DiscreteTopology L] (r : ) (hr : r < -(Module.finrank L)) :
      Summable fun (z : L) => z ^ r

      If L is a -lattice with rank d in E, then ∑ z ∈ L, ‖z‖ʳ converges when r < -d.

      theorem ZLattice.tsum_norm_rpow_le {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [FiniteDimensional E] (L : Submodule E) [DiscreteTopology L] (r : ) (hr : r < -(Module.finrank L)) :
      ∑' (z : L), z ^ r tsumNormRPowBound L ^ r * ∑' (k : ), k ^ ((Module.finrank L) - 1 + r)

      ∑ z ∈ L, ‖z‖⁻ʳ ≤ A⁻ʳ * ∑ k : ℕ, kᵈ⁻ʳ⁻¹ for some A > 0 depending only on L.

      theorem ZLattice.summable_norm_sub_rpow {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [FiniteDimensional E] (L : Submodule E) [DiscreteTopology L] (r : ) (hr : r < -(Module.finrank L)) (x : E) :
      Summable fun (z : L) => z - x ^ r
      theorem ZLattice.summable_norm_sub_zpow {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [FiniteDimensional E] (L : Submodule E) [DiscreteTopology L] (n : ) (hn : n < -(Module.finrank L)) (x : E) :
      Summable fun (z : L) => z - x ^ n
      theorem ZLattice.summable_norm_zpow {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [FiniteDimensional E] (L : Submodule E) [DiscreteTopology L] (n : ) (hn : n < -(Module.finrank L)) :
      Summable fun (z : L) => z ^ n
      theorem ZLattice.summable_norm_sub_inv_pow {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [FiniteDimensional E] (L : Submodule E) [DiscreteTopology L] (n : ) (hn : Module.finrank L < n) (x : E) :
      Summable fun (z : L) => z - x⁻¹ ^ n