@[reducible, inline]
abbrev
AddCommMonoid.zmodModule
{n : ℕ}
{M : Type u_1}
[NeZero n]
[AddCommMonoid M]
(h : ∀ (x : M), n • x = 0)
:
The ZMod n
-module structure on commutative monoids whose elements have order dividing n ≠ 0
.
Also implies a group structure via Module.addCommMonoidToAddCommGroup
.
See note [reducible non-instances].
Equations
- AddCommMonoid.zmodModule h = match n, h, ⋯, ⋯ with | n.succ, h, h_mod, this => Module.mk ⋯ ⋯
Instances For
@[reducible, inline]
The ZMod n
-module structure on Abelian groups whose elements have order dividing n
.
See note [reducible non-instances].
Equations
Instances For
@[reducible, inline]
abbrev
QuotientAddGroup.zmodModule
{n : ℕ}
{G : Type u_3}
[AddCommGroup G]
{H : AddSubgroup G}
(hH : ∀ (x : G), n • x ∈ H)
:
The quotient of an abelian group by a subgroup containing all multiples of n
is a
n
-torsion group.
Equations
Instances For
theorem
ZMod.map_smul
{n : ℕ}
{M : Type u_1}
{M₁ : Type u_2}
{F : Type u_3}
[AddCommGroup M]
[AddCommGroup M₁]
[FunLike F M M₁]
[AddMonoidHomClass F M M₁]
[Module (ZMod n) M]
[Module (ZMod n) M₁]
(f : F)
(c : ZMod n)
(x : M)
:
theorem
ZMod.smul_mem
{n : ℕ}
{M : Type u_1}
{S : Type u_4}
[AddCommGroup M]
[Module (ZMod n) M]
[SetLike S M]
[AddSubgroupClass S M]
{x : M}
{K : S}
(hx : x ∈ K)
(c : ZMod n)
:
def
AddMonoidHom.toZModLinearMap
(n : ℕ)
{M : Type u_1}
{M₁ : Type u_2}
[AddCommGroup M]
[AddCommGroup M₁]
[Module (ZMod n) M]
[Module (ZMod n) M₁]
(f : M →+ M₁)
:
Reinterpret an additive homomorphism as a ℤ/nℤ
-linear map.
See also:
AddMonoidHom.toIntLinearMap
, AddMonoidHom.toNatLinearMap
, AddMonoidHom.toRatLinearMap
Equations
- AddMonoidHom.toZModLinearMap n f = { toFun := (↑f).toFun, map_add' := ⋯, map_smul' := ⋯ }
Instances For
theorem
AddMonoidHom.toZModLinearMap_injective
(n : ℕ)
{M : Type u_1}
{M₁ : Type u_2}
[AddCommGroup M]
[AddCommGroup M₁]
[Module (ZMod n) M]
[Module (ZMod n) M₁]
:
@[simp]
theorem
AddMonoidHom.coe_toZModLinearMap
(n : ℕ)
{M : Type u_1}
{M₁ : Type u_2}
[AddCommGroup M]
[AddCommGroup M₁]
[Module (ZMod n) M]
[Module (ZMod n) M₁]
(f : M →+ M₁)
:
⇑(AddMonoidHom.toZModLinearMap n f) = ⇑f
def
AddSubgroup.toZModSubmodule
(n : ℕ)
{M : Type u_1}
[AddCommGroup M]
[Module (ZMod n) M]
:
AddSubgroup M ≃o Submodule (ZMod n) M
Reinterpret an additive subgroup of a ℤ/nℤ
-module as a ℤ/nℤ
-submodule.
See also: AddSubgroup.toIntSubmodule
, AddSubmonoid.toNatSubmodule
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
AddSubgroup.toZModSubmodule_symm
(n : ℕ)
{M : Type u_1}
[AddCommGroup M]
[Module (ZMod n) M]
:
⇑(AddSubgroup.toZModSubmodule n).symm = Submodule.toAddSubgroup
@[simp]
theorem
AddSubgroup.coe_toZModSubmodule
(n : ℕ)
{M : Type u_1}
[AddCommGroup M]
[Module (ZMod n) M]
(S : AddSubgroup M)
:
↑((AddSubgroup.toZModSubmodule n) S) = ↑S
@[simp]
theorem
AddSubgroup.mem_toZModSubmodule
(n : ℕ)
{M : Type u_1}
[AddCommGroup M]
[Module (ZMod n) M]
{x : M}
{S : AddSubgroup M}
:
x ∈ (AddSubgroup.toZModSubmodule n) S ↔ x ∈ S
@[simp]
theorem
AddSubgroup.toZModSubmodule_toAddSubgroup
(n : ℕ)
{M : Type u_1}
[AddCommGroup M]
[Module (ZMod n) M]
(S : AddSubgroup M)
:
((AddSubgroup.toZModSubmodule n) S).toAddSubgroup = S
@[simp]
theorem
Submodule.toAddSubgroup_toZModSubmodule
(n : ℕ)
{M : Type u_1}
[AddCommGroup M]
[Module (ZMod n) M]
(S : Submodule (ZMod n) M)
:
(AddSubgroup.toZModSubmodule n) S.toAddSubgroup = S