Documentation

Mathlib.Algebra.NonAssoc.LieAdmissible.Defs

Lie admissible rings and algebras #

We define a Lie-admissible ring as a nonunital nonassociative ring such that the associator satisfies the identity

associator x y z + associator z x y + associator y z x =
  associator y x z + associator z y x + associator x z y

Main definitions: #

Main results #

Implementation Notes #

Algebras are implemented as extending Module, IsScalarTower and SMulCommClass following the documentation of Algebra.

References #

Munthe-Kaas, H.Z., Lundervold, A. On Post-Lie Algebras, Lie–Butcher Series and Moving Frames.

class LieAdmissibleRing (L : Type u_1) extends NonUnitalNonAssocRing L :
Type u_1

A LieAdmissibleRing is a NonUnitalNonAssocRing such that the canonical bracket ⁅x, y⁆ := x * y - y * x turns it into a LieRing. This is expressed by an associator identity.

Instances
    class LieAdmissibleAlgebra (R : Type u_1) (L : Type u_2) [CommRing R] [LieAdmissibleRing L] extends Module R L, IsScalarTower R L L, SMulCommClass R L L :
    Type (max u_1 u_2)

    A LieAdmissibleAlgebra is a LieAdmissibleRing equipped with a compatible action by scalars from a commutative ring.

    Instances
      theorem LieAdmissibleAlgebra.ext {R : Type u_1} {L : Type u_2} {inst✝ : CommRing R} {inst✝¹ : LieAdmissibleRing L} {x y : LieAdmissibleAlgebra R L} (smul : SMul.smul = SMul.smul) :
      x = y
      theorem LieAdmissibleAlgebra.ext_iff {R : Type u_1} {L : Type u_2} {inst✝ : CommRing R} {inst✝¹ : LieAdmissibleRing L} {x y : LieAdmissibleAlgebra R L} :

      By definition, every LieAdmissibleRing yields a LieRing with the commutator bracket.

      Equations

      Every LieAdmissibleAlgebra is a LieAlgebra with the commutator bracket.

      Equations

      LeftPreLieRings are examples of LieAdmissibleRings by the commutatitvity assumption on the associator.

      Equations
      Equations

      RightPreLieRings are examples of LieAdmissibleRings by the commutatitvity assumption on the associator.

      Equations
      Equations