Lie admissible rings and algebras #
We define a Lie-admissible ring as a nonunital nonassociative ring such that the associator satisfies the identity
associator x y z + associator z x y + associator y z x =
associator y x z + associator z y x + associator x z y
Main definitions: #
Main results #
LieAdmissibleRing.instLieRing
: a Lie-admissible ring as a Lie ringLeftPreLieRing.instLieAdmissibleRing
: a left pre-Lie ring as a Lie admissible ringRightPreLieRing.instLieAdmissibleRing
: a right pre-Lie ring as a Lie admissible ringLieAdmissibleAlgebra.instLieAlgebra
: a Lie-admissible algebra as a Lie algebraLeftPreLieAlgebra.instLieAdmissibleAlgebra
: a left pre-Lie ring as a Lie admissible algebraRightPreLieAlgebra.instLieAdmissibleAlgebra
: a right pre-Lie ring as a Lie admissible algebra
Implementation Notes #
Algebras are implemented as extending Module
, IsScalarTower
and SMulCommClass
following the
documentation of Algebra
.
References #
Munthe-Kaas, H.Z., Lundervold, A. On Post-Lie Algebras, Lie–Butcher Series and Moving Frames.
A LieAdmissibleRing
is a NonUnitalNonAssocRing
such that the canonical bracket
⁅x, y⁆ := x * y - y * x
turns it into a LieRing
. This is expressed by an associator identity.
- add : L → L → L
- zero : L
- neg : L → L
- sub : L → L → L
- mul : L → L → L
- assoc_def (x y z : L) : associator x y z + associator z x y + associator y z x = associator y x z + associator z y x + associator x z y
Instances
A LieAdmissibleAlgebra
is a LieAdmissibleRing
equipped with a compatible action by scalars
from a commutative ring.
- smul : R → L → L
Instances
By definition, every LieAdmissibleRing
yields a LieRing
with the commutator bracket.
Equations
- LieAdmissibleRing.instLieRing = { toAddCommGroup := inst✝.toAddCommGroup, toBracket := Ring.instBracket, add_lie := ⋯, lie_add := ⋯, lie_self := ⋯, leibniz_lie := ⋯ }
Every LieAdmissibleAlgebra
is a LieAlgebra
with the commutator bracket.
Equations
- LieAdmissibleAlgebra.instLieAlgebra = { toModule := inst✝.toModule, lie_smul := ⋯ }
LeftPreLieRings
are examples of LieAdmissibleRings
by the commutatitvity assumption on the
associator.
Equations
- LeftPreLieRing.instLieAdmissibleRing = { toNonUnitalNonAssocRing := inst✝.toNonUnitalNonAssocRing, assoc_def := ⋯ }
Equations
- LeftPreLieAlgebra.instLieAdmissibleAlgebra = { toModule := inst✝.toModule, toIsScalarTower := ⋯, toSMulCommClass := ⋯ }
RightPreLieRings
are examples of LieAdmissibleRings
by the commutatitvity assumption on
the associator.
Equations
- RightPreLieRing.instLieAdmissibleRing = { toNonUnitalNonAssocRing := inst✝.toNonUnitalNonAssocRing, assoc_def := ⋯ }
Equations
- RightPreLieAlgebra.instLieAdmissibleAlgebra = { toModule := inst✝.toModule, toIsScalarTower := ⋯, toSMulCommClass := ⋯ }