Documentation

Mathlib.Algebra.Order.Floor.Defs

Floor and ceil #

We define the natural- and integer-valued floor and ceil functions on linearly ordered rings. We also provide positivity extensions to handle floor and ceil.

Main definitions #

Notations #

The index in the notations for Nat.floor and Nat.ceil is used in analogy to the notation for nnnorm.

TODO #

LinearOrderedRing/LinearOrderedSemiring can be relaxed to OrderedRing/OrderedSemiring in many lemmas.

Tags #

rounding, floor, ceil

Floor semiring #

class FloorSemiring (α : Type u_4) [OrderedSemiring α] :
Type u_4

A FloorSemiring is an ordered semiring over α with a function floor : α → ℕ satisfying ∀ (n : ℕ) (x : α), n ≤ ⌊x⌋ ↔ (n : α) ≤ x). Note that many lemmas require a LinearOrder. Please see the above TODO.

Instances
    def Nat.floor {α : Type u_2} [OrderedSemiring α] [FloorSemiring α] :
    α

    ⌊a⌋₊ is the greatest natural n such that n ≤ a. If a is negative, then ⌊a⌋₊ = 0.

    Equations
    Instances For
      def Nat.ceil {α : Type u_2} [OrderedSemiring α] [FloorSemiring α] :
      α

      ⌈a⌉₊ is the least natural n such that a ≤ n

      Equations
      Instances For
        @[simp]
        @[simp]

        ⌊a⌋₊ is the greatest natural n such that n ≤ a. If a is negative, then ⌊a⌋₊ = 0.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          ⌈a⌉₊ is the least natural n such that a ≤ n

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem Nat.le_floor_iff {α : Type u_2} [OrderedSemiring α] [FloorSemiring α] {a : α} {n : } (ha : 0 a) :
            n a⌋₊ n a
            theorem Nat.le_floor {α : Type u_2} [OrderedSemiring α] [FloorSemiring α] {a : α} {n : } (h : n a) :
            @[simp]
            theorem Nat.ceil_le {α : Type u_2} [OrderedSemiring α] [FloorSemiring α] {a : α} {n : } :
            a⌉₊ n a n
            theorem Nat.lt_ceil {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} {n : } :
            n < a⌉₊ n < a
            @[simp]
            theorem Nat.ceil_pos {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} :
            0 < a⌉₊ 0 < a

            Floor rings #

            class FloorRing (α : Type u_4) [LinearOrderedRing α] :
            Type u_4

            A FloorRing is a linear ordered ring over α with a function floor : α → ℤ satisfying ∀ (z : ℤ) (a : α), z ≤ floor a ↔ (z : α) ≤ a).

            Instances
              Equations
              def FloorRing.ofFloor (α : Type u_4) [LinearOrderedRing α] (floor : α) (gc_coe_floor : GaloisConnection Int.cast floor) :

              A FloorRing constructor from the floor function alone.

              Equations
              • FloorRing.ofFloor α floor gc_coe_floor = { floor := floor, ceil := fun (a : α) => -floor (-a), gc_coe_floor := gc_coe_floor, gc_ceil_coe := }
              Instances For
                def FloorRing.ofCeil (α : Type u_4) [LinearOrderedRing α] (ceil : α) (gc_ceil_coe : GaloisConnection ceil Int.cast) :

                A FloorRing constructor from the ceil function alone.

                Equations
                • FloorRing.ofCeil α ceil gc_ceil_coe = { floor := fun (a : α) => -ceil (-a), ceil := ceil, gc_coe_floor := , gc_ceil_coe := gc_ceil_coe }
                Instances For
                  def Int.floor {α : Type u_2} [LinearOrderedRing α] [FloorRing α] :
                  α

                  Int.floor a is the greatest integer z such that z ≤ a. It is denoted with ⌊a⌋.

                  Equations
                  Instances For
                    def Int.ceil {α : Type u_2} [LinearOrderedRing α] [FloorRing α] :
                    α

                    Int.ceil a is the smallest integer z such that a ≤ z. It is denoted with ⌈a⌉.

                    Equations
                    Instances For
                      def Int.fract {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
                      α

                      Int.fract a the fractional part of a, is a minus its floor.

                      Equations
                      Instances For
                        @[simp]
                        @[simp]
                        @[simp]
                        theorem Int.fract_int :

                        Int.floor a is the greatest integer z such that z ≤ a. It is denoted with ⌊a⌋.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For

                          Int.ceil a is the smallest integer z such that a ≤ z. It is denoted with ⌈a⌉.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For

                            Floor #

                            theorem Int.le_floor {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {z : } {a : α} :
                            z a z a
                            theorem Int.floor_lt {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {z : } {a : α} :
                            a < z a < z
                            theorem Int.floor_le {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
                            a a
                            theorem Int.floor_nonneg {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a : α} :
                            0 a 0 a
                            theorem Int.floor_nonpos {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a : α} (ha : a 0) :

                            Ceil #

                            theorem Int.ceil_le {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {z : } {a : α} :
                            a z a z
                            theorem Int.lt_ceil {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {z : } {a : α} :
                            z < a z < a
                            theorem Int.le_ceil {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
                            a a
                            theorem Int.ceil_nonneg {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a : α} (ha : 0 a) :
                            @[simp]
                            theorem Int.ceil_pos {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a : α} :
                            0 < a 0 < a

                            A floor ring as a floor semiring #

                            @[instance 100]
                            Equations
                            theorem Int.floor_toNat {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
                            theorem Int.ceil_toNat {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :

                            Extension for the positivity tactic: Int.floor is nonnegative if its input is.

                            Instances For

                              Extension for the positivity tactic: Nat.ceil is positive if its input is.

                              Instances For

                                Extension for the positivity tactic: Int.ceil is positive/nonnegative if its input is.

                                Instances For