Documentation

Mathlib.Algebra.Order.Floor.Semifield

Lemmas on Nat.floor and Nat.ceil for semifields #

This file contains basic results on the natural-valued floor and ceiling functions.

Tags #

rounding, floor, ceil

theorem Nat.cast_mul_floor_div_cancel {K : Type u_2} [Semifield K] [LinearOrder K] [IsStrictOrderedRing K] [FloorSemiring K] {n : } (hn : n 0) (a : K) :
theorem Nat.mul_cast_floor_div_cancel {K : Type u_2} [Semifield K] [LinearOrder K] [IsStrictOrderedRing K] [FloorSemiring K] {n : } (hn : n 0) (a : K) :
@[deprecated Nat.floor_div_natCast (since := "2025-04-01")]
theorem Nat.floor_div_nat {K : Type u_2} [Semifield K] [LinearOrder K] [IsStrictOrderedRing K] [FloorSemiring K] (a : K) (n : ) :

Alias of Nat.floor_div_natCast.

theorem Nat.floor_div_eq_div {K : Type u_2} [Semifield K] [LinearOrder K] [IsStrictOrderedRing K] [FloorSemiring K] (m n : ) :
m / n⌋₊ = m / n

Natural division is the floor of field division.

theorem Nat.mul_lt_floor {K : Type u_2} [Field K] [LinearOrder K] [IsStrictOrderedRing K] [FloorSemiring K] {a b : K} (hb₀ : 0 < b) (hb : b < 1) (hba : b / (1 - b)⌉₊ a) :
b * a < a⌋₊
theorem Nat.ceil_lt_mul {K : Type u_2} [Field K] [LinearOrder K] [IsStrictOrderedRing K] [FloorSemiring K] {a b : K} (hb : 1 < b) (hba : (b - 1)⁻¹⌉₊ / b < a) :
a⌉₊ < b * a
theorem Nat.ceil_le_mul {K : Type u_2} [Field K] [LinearOrder K] [IsStrictOrderedRing K] [FloorSemiring K] {a b : K} (hb : 1 < b) (hba : (b - 1)⁻¹⌉₊ / b a) :
a⌉₊ b * a
theorem Nat.div_two_lt_floor {K : Type u_2} [Field K] [LinearOrder K] [IsStrictOrderedRing K] [FloorSemiring K] {a : K} (ha : 1 a) :
a / 2 < a⌋₊
theorem Nat.ceil_lt_two_mul {K : Type u_2} [Field K] [LinearOrder K] [IsStrictOrderedRing K] [FloorSemiring K] {a : K} (ha : 2⁻¹ < a) :
a⌉₊ < 2 * a
theorem Nat.ceil_le_two_mul {K : Type u_2} [Field K] [LinearOrder K] [IsStrictOrderedRing K] [FloorSemiring K] {a : K} (ha : 2⁻¹ a) :
a⌉₊ 2 * a