Least upper bound and the greatest lower bound in linear ordered additive commutative groups #
theorem
IsGLB.exists_between_self_add
{α : Type u_1}
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
{s : Set α}
{a ε : α}
(h : IsGLB s a)
(hε : 0 < ε)
:
theorem
IsGLB.exists_between_self_add'
{α : Type u_1}
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
{s : Set α}
{a ε : α}
(h : IsGLB s a)
(h₂ : a ∉ s)
(hε : 0 < ε)
:
theorem
IsLUB.exists_between_sub_self
{α : Type u_1}
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
{s : Set α}
{a ε : α}
(h : IsLUB s a)
(hε : 0 < ε)
:
theorem
IsLUB.exists_between_sub_self'
{α : Type u_1}
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
{s : Set α}
{a ε : α}
(h : IsLUB s a)
(h₂ : a ∉ s)
(hε : 0 < ε)
: