Documentation

Mathlib.Algebra.Order.Group.Opposite

Order instances for MulOpposite/AddOpposite #

This files transfers order instances and ordered monoid/group instances from α to αᵐᵒᵖ and αᵃᵒᵖ.

@[simp]
theorem MulOpposite.unop_le_unop {α : Type u_1} [Preorder α] {a b : αᵐᵒᵖ} :
unop a unop b a b
@[simp]
theorem AddOpposite.unop_le_unop {α : Type u_1} [Preorder α] {a b : αᵃᵒᵖ} :
unop a unop b a b
@[simp]
theorem MulOpposite.op_le_op {α : Type u_1} [Preorder α] {a b : α} :
op a op b a b
@[simp]
theorem AddOpposite.op_le_op {α : Type u_1} [Preorder α] {a b : α} :
op a op b a b
@[simp]
theorem MulOpposite.unop_le_one {α : Type u_1} [OrderedCommMonoid α] {a : αᵐᵒᵖ} :
unop a 1 a 1
@[simp]
theorem AddOpposite.unop_nonpos {α : Type u_1} [OrderedAddCommMonoid α] {a : αᵃᵒᵖ} :
unop a 0 a 0
@[simp]
theorem MulOpposite.one_le_unop {α : Type u_1} [OrderedCommMonoid α] {a : αᵐᵒᵖ} :
1 unop a 1 a
@[simp]
theorem AddOpposite.nonneg_unop {α : Type u_1} [OrderedAddCommMonoid α] {a : αᵃᵒᵖ} :
0 unop a 0 a
@[simp]
theorem MulOpposite.op_le_one {α : Type u_1} [OrderedCommMonoid α] {a : α} :
op a 1 a 1
@[simp]
theorem AddOpposite.op_nonpos {α : Type u_1} [OrderedAddCommMonoid α] {a : α} :
op a 0 a 0
@[simp]
theorem MulOpposite.one_le_op {α : Type u_1} [OrderedCommMonoid α] {a : α} :
1 op a 1 a
@[simp]
theorem AddOpposite.nonneg_op {α : Type u_1} [OrderedAddCommMonoid α] {a : α} :
0 op a 0 a
@[simp]
theorem MulOpposite.unop_nonpos {α : Type u_1} [OrderedAddCommMonoid α] {a : αᵐᵒᵖ} :
unop a 0 a 0
@[simp]
theorem MulOpposite.unop_nonneg {α : Type u_1} [OrderedAddCommMonoid α] {a : αᵐᵒᵖ} :
0 unop a 0 a
@[simp]
theorem MulOpposite.op_nonpos {α : Type u_1} [OrderedAddCommMonoid α] {a : α} :
op a 0 a 0
@[simp]
theorem MulOpposite.op_nonneg {α : Type u_1} [OrderedAddCommMonoid α] {a : α} :
0 op a 0 a
@[simp]
theorem AddOpposite.unop_le_one {α : Type u_1} [OrderedCommMonoid α] {a : αᵃᵒᵖ} :
unop a 1 a 1
@[simp]
theorem AddOpposite.one_le_unop {α : Type u_1} [OrderedCommMonoid α] {a : αᵃᵒᵖ} :
1 unop a 1 a
@[simp]
theorem AddOpposite.op_le_one {α : Type u_1} [OrderedCommMonoid α] {a : α} :
op a 1 a 1
@[simp]
theorem AddOpposite.one_le_op {α : Type u_1} [OrderedCommMonoid α] {a : α} :
1 op a 1 a