Order instances for MulOpposite
/AddOpposite
#
This files transfers order instances and ordered monoid/group instances from α
to αᵐᵒᵖ
and
αᵃᵒᵖ
.
Equations
- AddOpposite.instPreorder = Preorder.lift AddOpposite.unop
Equations
- MulOpposite.instPreorder = Preorder.lift MulOpposite.unop
@[simp]
theorem
AddOpposite.unop_le_unop
{α : Type u_1}
[Preorder α]
{a : αᵃᵒᵖ}
{b : αᵃᵒᵖ}
:
AddOpposite.unop a ≤ AddOpposite.unop b ↔ a ≤ b
@[simp]
theorem
MulOpposite.unop_le_unop
{α : Type u_1}
[Preorder α]
{a : αᵐᵒᵖ}
{b : αᵐᵒᵖ}
:
MulOpposite.unop a ≤ MulOpposite.unop b ↔ a ≤ b
@[simp]
theorem
AddOpposite.op_le_op
{α : Type u_1}
[Preorder α]
{a : α}
{b : α}
:
AddOpposite.op a ≤ AddOpposite.op b ↔ a ≤ b
@[simp]
theorem
MulOpposite.op_le_op
{α : Type u_1}
[Preorder α]
{a : α}
{b : α}
:
MulOpposite.op a ≤ MulOpposite.op b ↔ a ≤ b
Equations
- AddOpposite.instPartialOrder = PartialOrder.lift AddOpposite.unop ⋯
Equations
- MulOpposite.instPartialOrder = PartialOrder.lift MulOpposite.unop ⋯
Equations
- AddOpposite.instOrderedAddCommMonoid = OrderedAddCommMonoid.mk ⋯
Equations
- MulOpposite.instOrderedCommMonoid = OrderedCommMonoid.mk ⋯
@[simp]
theorem
AddOpposite.unop_nonpos
{α : Type u_1}
[OrderedAddCommMonoid α]
{a : αᵃᵒᵖ}
:
AddOpposite.unop a ≤ 0 ↔ a ≤ 0
@[simp]
theorem
MulOpposite.unop_le_one
{α : Type u_1}
[OrderedCommMonoid α]
{a : αᵐᵒᵖ}
:
MulOpposite.unop a ≤ 1 ↔ a ≤ 1
@[simp]
theorem
AddOpposite.nonneg_unop
{α : Type u_1}
[OrderedAddCommMonoid α]
{a : αᵃᵒᵖ}
:
0 ≤ AddOpposite.unop a ↔ 0 ≤ a
@[simp]
theorem
MulOpposite.one_le_unop
{α : Type u_1}
[OrderedCommMonoid α]
{a : αᵐᵒᵖ}
:
1 ≤ MulOpposite.unop a ↔ 1 ≤ a
@[simp]
theorem
AddOpposite.op_nonpos
{α : Type u_1}
[OrderedAddCommMonoid α]
{a : α}
:
AddOpposite.op a ≤ 0 ↔ a ≤ 0
@[simp]
theorem
MulOpposite.op_le_one
{α : Type u_1}
[OrderedCommMonoid α]
{a : α}
:
MulOpposite.op a ≤ 1 ↔ a ≤ 1
@[simp]
theorem
AddOpposite.nonneg_op
{α : Type u_1}
[OrderedAddCommMonoid α]
{a : α}
:
0 ≤ AddOpposite.op a ↔ 0 ≤ a
@[simp]
theorem
MulOpposite.one_le_op
{α : Type u_1}
[OrderedCommMonoid α]
{a : α}
:
1 ≤ MulOpposite.op a ↔ 1 ≤ a
Equations
- AddOpposite.instOrderedAddCommGroup = OrderedAddCommGroup.mk ⋯
Equations
- MulOpposite.instOrderedCommGroup = OrderedCommGroup.mk ⋯
Equations
- MulOpposite.instOrderedAddCommMonoid = OrderedAddCommMonoid.mk ⋯
@[simp]
theorem
MulOpposite.unop_nonneg
{α : Type u_1}
[OrderedAddCommMonoid α]
{a : αᵐᵒᵖ}
:
MulOpposite.unop a ≤ 0 ↔ a ≤ 0
@[simp]
theorem
MulOpposite.unop_nonpos
{α : Type u_1}
[OrderedAddCommMonoid α]
{a : αᵐᵒᵖ}
:
0 ≤ MulOpposite.unop a ↔ 0 ≤ a
@[simp]
theorem
MulOpposite.op_nonneg
{α : Type u_1}
[OrderedAddCommMonoid α]
{a : α}
:
MulOpposite.op a ≤ 0 ↔ a ≤ 0
@[simp]
theorem
MulOpposite.op_nonpos
{α : Type u_1}
[OrderedAddCommMonoid α]
{a : α}
:
0 ≤ MulOpposite.op a ↔ 0 ≤ a
Equations
- MulOpposite.instOrderedAddCommGroup = OrderedAddCommGroup.mk ⋯
Equations
- AddOpposite.instOrderedCommMonoid = OrderedCommMonoid.mk ⋯
@[simp]
theorem
AddOpposite.unop_le_one
{α : Type u_1}
[OrderedCommMonoid α]
{a : αᵃᵒᵖ}
:
AddOpposite.unop a ≤ 1 ↔ a ≤ 1
@[simp]
theorem
AddOpposite.one_le_unop
{α : Type u_1}
[OrderedCommMonoid α]
{a : αᵃᵒᵖ}
:
1 ≤ AddOpposite.unop a ↔ 1 ≤ a
@[simp]
theorem
AddOpposite.op_le_one
{α : Type u_1}
[OrderedCommMonoid α]
{a : α}
:
AddOpposite.op a ≤ 1 ↔ a ≤ 1
@[simp]
theorem
AddOpposite.one_le_op
{α : Type u_1}
[OrderedCommMonoid α]
{a : α}
:
1 ≤ AddOpposite.op a ↔ 1 ≤ a
Equations
- AddOpposite.instOrderedCommGroup = OrderedCommGroup.mk ⋯