Finset.sup
in a group with zero #
theorem
Finset.sup_mul_le_mul_sup_of_nonneg
{ι : Type u_1}
{M₀ : Type u_2}
[MonoidWithZero M₀]
{s : Finset ι}
{a b : ι → M₀}
[SemilatticeSup M₀]
[OrderBot M₀]
[PosMulMono M₀]
[MulPosMono M₀]
(ha : ∀ i ∈ s, 0 ≤ a i)
(hb : ∀ i ∈ s, 0 ≤ b i)
:
theorem
Finset.mul_inf_le_inf_mul_of_nonneg
{ι : Type u_1}
{M₀ : Type u_2}
[MonoidWithZero M₀]
{s : Finset ι}
{a b : ι → M₀}
[SemilatticeInf M₀]
[OrderTop M₀]
[PosMulMono M₀]
[MulPosMono M₀]
(ha : ∀ i ∈ s, 0 ≤ a i)
(hb : ∀ i ∈ s, 0 ≤ b i)
:
theorem
Finset.sup'_mul_le_mul_sup'_of_nonneg
{ι : Type u_1}
{M₀ : Type u_2}
[MonoidWithZero M₀]
{s : Finset ι}
{a b : ι → M₀}
[SemilatticeSup M₀]
[PosMulMono M₀]
[MulPosMono M₀]
(ha : ∀ i ∈ s, 0 ≤ a i)
(hb : ∀ i ∈ s, 0 ≤ b i)
(hs : s.Nonempty)
:
theorem
Finset.inf'_mul_le_mul_inf'_of_nonneg
{ι : Type u_1}
{M₀ : Type u_2}
[MonoidWithZero M₀]
{s : Finset ι}
{a b : ι → M₀}
[SemilatticeInf M₀]
[PosMulMono M₀]
[MulPosMono M₀]
(ha : ∀ i ∈ s, 0 ≤ a i)
(hb : ∀ i ∈ s, 0 ≤ b i)
(hs : s.Nonempty)
:
theorem
Finset.sup'_mul₀
{ι : Type u_1}
{G₀ : Type u_3}
[GroupWithZero G₀]
[SemilatticeSup G₀]
{a : G₀}
[MulPosMono G₀]
[MulPosReflectLE G₀]
(ha : 0 < a)
(f : ι → G₀)
(s : Finset ι)
(hs : s.Nonempty)
:
theorem
Finset.mul₀_sup'
{ι : Type u_1}
{G₀ : Type u_3}
[GroupWithZero G₀]
[SemilatticeSup G₀]
{a : G₀}
[PosMulMono G₀]
[PosMulReflectLE G₀]
(ha : 0 < a)
(f : ι → G₀)
(s : Finset ι)
(hs : s.Nonempty)
:
theorem
Finset.sup'_div₀
{ι : Type u_1}
{G₀ : Type u_3}
[GroupWithZero G₀]
[SemilatticeSup G₀]
{a : G₀}
[ZeroLEOneClass G₀]
[MulPosStrictMono G₀]
[MulPosReflectLE G₀]
[PosMulReflectLT G₀]
(ha : 0 < a)
(f : ι → G₀)
(s : Finset ι)
(hs : s.Nonempty)
: