Algebraic properties of multiset intervals #
This file provides results about the interaction of algebra with Multiset.Ixx
.
theorem
Multiset.map_add_left_Icc
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(a b c : α)
:
Multiset.map (fun (x : α) => c + x) (Multiset.Icc a b) = Multiset.Icc (c + a) (c + b)
theorem
Multiset.map_add_left_Ico
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(a b c : α)
:
Multiset.map (fun (x : α) => c + x) (Multiset.Ico a b) = Multiset.Ico (c + a) (c + b)
theorem
Multiset.map_add_left_Ioc
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(a b c : α)
:
Multiset.map (fun (x : α) => c + x) (Multiset.Ioc a b) = Multiset.Ioc (c + a) (c + b)
theorem
Multiset.map_add_left_Ioo
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(a b c : α)
:
Multiset.map (fun (x : α) => c + x) (Multiset.Ioo a b) = Multiset.Ioo (c + a) (c + b)
theorem
Multiset.map_add_right_Icc
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(a b c : α)
:
Multiset.map (fun (x : α) => x + c) (Multiset.Icc a b) = Multiset.Icc (a + c) (b + c)
theorem
Multiset.map_add_right_Ico
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(a b c : α)
:
Multiset.map (fun (x : α) => x + c) (Multiset.Ico a b) = Multiset.Ico (a + c) (b + c)
theorem
Multiset.map_add_right_Ioc
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(a b c : α)
:
Multiset.map (fun (x : α) => x + c) (Multiset.Ioc a b) = Multiset.Ioc (a + c) (b + c)
theorem
Multiset.map_add_right_Ioo
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(a b c : α)
:
Multiset.map (fun (x : α) => x + c) (Multiset.Ioo a b) = Multiset.Ioo (a + c) (b + c)