Algebraic properties of multiset intervals #
This file provides results about the interaction of algebra with Multiset.Ixx
.
theorem
Multiset.map_add_left_Icc
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(a b c : α)
:
theorem
Multiset.map_add_left_Ico
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(a b c : α)
:
theorem
Multiset.map_add_left_Ioc
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(a b c : α)
:
theorem
Multiset.map_add_left_Ioo
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(a b c : α)
:
theorem
Multiset.map_add_right_Icc
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(a b c : α)
:
theorem
Multiset.map_add_right_Ico
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(a b c : α)
:
theorem
Multiset.map_add_right_Ioc
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(a b c : α)
:
theorem
Multiset.map_add_right_Ioo
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(a b c : α)
: