Documentation

Mathlib.Algebra.Order.Module.Equiv

Linear equivalence for order type synonyms #

def toLexLinearEquiv (α : Type u_1) (β : Type u_2) [Semiring α] [AddCommMonoid β] [Module α β] :
β ≃ₗ[α] Lex β

toLex as a linear equivalence

Equations
Instances For
    def ofLexLinearEquiv (α : Type u_1) (β : Type u_2) [Semiring α] [AddCommMonoid β] [Module α β] :
    Lex β ≃ₗ[α] β

    ofLex as a linear equivalence

    Equations
    Instances For
      @[simp]
      theorem coe_toLexLinearEquiv (α : Type u_1) (β : Type u_2) [Semiring α] [AddCommMonoid β] [Module α β] :
      (toLexLinearEquiv α β) = toLex
      @[simp]
      theorem coe_ofLexLinearEquiv (α : Type u_1) (β : Type u_2) [Semiring α] [AddCommMonoid β] [Module α β] :
      (ofLexLinearEquiv α β) = ofLex
      @[simp]
      theorem symm_toLexLinearEquiv (α : Type u_1) (β : Type u_2) [Semiring α] [AddCommMonoid β] [Module α β] :
      @[simp]
      theorem symm_ofLexLinearEquiv (α : Type u_1) (β : Type u_2) [Semiring α] [AddCommMonoid β] [Module α β] :