Documentation

Mathlib.Algebra.Order.Positive.Ring

Algebraic structures on the set of positive numbers #

In this file we define various instances (AddSemigroup, OrderedCommMonoid etc) on the type {x : R // 0 < x}. In each case we try to require the weakest possible typeclass assumptions on R but possibly, there is a room for improvements.

instance Positive.instAddSubtypeLtOfNat_mathlib {M : Type u_1} [AddMonoid M] [Preorder M] [AddLeftStrictMono M] :
Add { x : M // 0 < x }
Equations
  • Positive.instAddSubtypeLtOfNat_mathlib = { add := fun (x y : { x : M // 0 < x }) => x + y, }
@[simp]
theorem Positive.coe_add {M : Type u_1} [AddMonoid M] [Preorder M] [AddLeftStrictMono M] (x y : { x : M // 0 < x }) :
(x + y) = x + y
instance Positive.addSemigroup {M : Type u_1} [AddMonoid M] [Preorder M] [AddLeftStrictMono M] :
AddSemigroup { x : M // 0 < x }
Equations
Equations
Equations
Equations
instance Positive.addLeftMono {M : Type u_1} [AddMonoid M] [PartialOrder M] [AddLeftStrictMono M] :
AddLeftMono { x : M // 0 < x }
instance Positive.instMulSubtypeLtOfNat_mathlib {R : Type u_2} [StrictOrderedSemiring R] :
Mul { x : R // 0 < x }
Equations
  • Positive.instMulSubtypeLtOfNat_mathlib = { mul := fun (x y : { x : R // 0 < x }) => x * y, }
@[simp]
theorem Positive.val_mul {R : Type u_2} [StrictOrderedSemiring R] (x y : { x : R // 0 < x }) :
(x * y) = x * y
Equations
  • Positive.instPowSubtypeLtOfNatNat_mathlib = { pow := fun (x : { x : R // 0 < x }) (n : ) => x ^ n, }
@[simp]
theorem Positive.val_pow {R : Type u_2} [StrictOrderedSemiring R] (x : { x : R // 0 < x }) (n : ) :
(x ^ n) = x ^ n
Equations
instance Positive.instDistribSubtypeLtOfNat {R : Type u_2} [StrictOrderedSemiring R] :
Distrib { x : R // 0 < x }
Equations
instance Positive.instOneSubtypeLtOfNat {R : Type u_2} [StrictOrderedSemiring R] :
One { x : R // 0 < x }
Equations
  • Positive.instOneSubtypeLtOfNat = { one := 1, }
@[simp]
theorem Positive.val_one {R : Type u_2} [StrictOrderedSemiring R] :
1 = 1
instance Positive.instMonoidSubtypeLtOfNat {R : Type u_2} [StrictOrderedSemiring R] :
Monoid { x : R // 0 < x }
Equations
Equations

If R is a nontrivial linear ordered commutative semiring, then {x : R // 0 < x} is a linear ordered cancellative commutative monoid.

Equations