Ordered rings and semirings #
This file develops the basics of ordered (semi)rings.
Each typeclass here comprises
- an algebraic class (
Semiring,CommSemiring,Ring,CommRing) - an order class (
PartialOrder,LinearOrder) - assumptions on how both interact ((strict) monotonicity, canonicity)
For short,
- "
+respects≤" means "monotonicity of addition" - "
+respects<" means "strict monotonicity of addition" - "
*respects≤" means "monotonicity of multiplication by a nonnegative number". - "
*respects<" means "strict monotonicity of multiplication by a positive number".
Typeclasses #
OrderedSemiring: Semiring with a partial order such that+and*respect≤.StrictOrderedSemiring: Nontrivial semiring with a partial order such that+and*respects<.OrderedCommSemiring: Commutative semiring with a partial order such that+and*respect≤.StrictOrderedCommSemiring: Nontrivial commutative semiring with a partial order such that+and*respect<.OrderedRing: Ring with a partial order such that+respects≤and*respects<.OrderedCommRing: Commutative ring with a partial order such that+respects≤and*respects<.LinearOrderedSemiring: Nontrivial semiring with a linear order such that+respects≤and*respects<.LinearOrderedCommSemiring: Nontrivial commutative semiring with a linear order such that+respects≤and*respects<.LinearOrderedRing: Nontrivial ring with a linear order such that+respects≤and*respects<.LinearOrderedCommRing: Nontrivial commutative ring with a linear order such that+respects≤and*respects<.
Hierarchy #
The hardest part of proving order lemmas might be to figure out the correct generality and its corresponding typeclass. Here's an attempt at demystifying it. For each typeclass, we list its immediate predecessors and what conditions are added to each of them.
OrderedSemiringOrderedAddCommMonoid& multiplication &*respects≤Semiring& partial order structure &+respects≤&*respects≤
StrictOrderedSemiringOrderedCancelAddCommMonoid& multiplication &*respects<& nontrivialityOrderedSemiring&+respects<&*respects<& nontriviality
OrderedCommSemiringOrderedSemiring& commutativity of multiplicationCommSemiring& partial order structure &+respects≤&*respects<
StrictOrderedCommSemiringStrictOrderedSemiring& commutativity of multiplicationOrderedCommSemiring&+respects<&*respects<& nontriviality
OrderedRingOrderedSemiring& additive inversesOrderedAddCommGroup& multiplication &*respects<Ring& partial order structure &+respects≤&*respects<
StrictOrderedRingStrictOrderedSemiring& additive inversesOrderedSemiring&+respects<&*respects<& nontriviality
OrderedCommRingOrderedRing& commutativity of multiplicationOrderedCommSemiring& additive inversesCommRing& partial order structure &+respects≤&*respects<
StrictOrderedCommRingStrictOrderedCommSemiring& additive inversesStrictOrderedRing& commutativity of multiplicationOrderedCommRing&+respects<&*respects<& nontriviality
LinearOrderedSemiringStrictOrderedSemiring& totality of the orderLinearOrderedAddCommMonoid& multiplication & nontriviality &*respects<
LinearOrderedCommSemiringStrictOrderedCommSemiring& totality of the orderLinearOrderedSemiring& commutativity of multiplication
LinearOrderedRingLinearOrderedCommRing
An ordered semiring is a semiring with a partial order such that addition is monotone and multiplication by a nonnegative number is monotone.
Instances
A strict ordered semiring is a nontrivial semiring with a partial order such that addition is strictly monotone and multiplication by a positive number is strictly monotone.
Instances
Turn an ordered domain into a strict ordered ring.
This is not an instance, as it would loop with NeZero.charZero_one.
Note that OrderDual does not satisfy any of the ordered ring typeclasses due to the
zero_le_one field.