Documentation

Mathlib.Algebra.Order.Ring.Finset

Algebraic properties of finitary supremum #

theorem Finset.sup_mul_le_mul_sup_of_nonneg {ι : Type u_1} {R : Type u_2} [LinearOrderedSemiring R] {a b : ιR} [OrderBot R] (s : Finset ι) (ha : is, 0 a i) (hb : is, 0 b i) :
s.sup (a * b) s.sup a * s.sup b
theorem Finset.mul_inf_le_inf_mul_of_nonneg {ι : Type u_1} {R : Type u_2} [LinearOrderedSemiring R] {a b : ιR} [OrderTop R] (s : Finset ι) (ha : is, 0 a i) (hb : is, 0 b i) :
s.inf a * s.inf b s.inf (a * b)
theorem Finset.sup'_mul_le_mul_sup'_of_nonneg {ι : Type u_1} {R : Type u_2} [LinearOrderedSemiring R] {a b : ιR} (s : Finset ι) (H : s.Nonempty) (ha : is, 0 a i) (hb : is, 0 b i) :
s.sup' H (a * b) s.sup' H a * s.sup' H b
theorem Finset.inf'_mul_le_mul_inf'_of_nonneg {ι : Type u_1} {R : Type u_2} [LinearOrderedSemiring R] {a b : ιR} (s : Finset ι) (H : s.Nonempty) (ha : is, 0 a i) (hb : is, 0 b i) :
s.inf' H a * s.inf' H b s.inf' H (a * b)