Lemmas about subtraction in an unbundled canonically ordered monoids #
@[simp]
theorem
add_tsub_cancel_of_le
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b : α}
(h : a ≤ b)
:
theorem
tsub_add_cancel_of_le
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b : α}
(h : a ≤ b)
:
theorem
add_le_of_le_tsub_right_of_le
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
(h : b ≤ c)
(h2 : a ≤ c - b)
:
theorem
add_le_of_le_tsub_left_of_le
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
(h : a ≤ c)
(h2 : b ≤ c - a)
:
theorem
tsub_le_tsub_iff_right
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
(h : c ≤ b)
:
theorem
tsub_left_inj
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
(h1 : c ≤ a)
(h2 : c ≤ b)
:
theorem
tsub_inj_left
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
(h₁ : a ≤ b)
(h₂ : a ≤ c)
:
theorem
lt_of_tsub_lt_tsub_right_of_le
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
(h : c ≤ b)
(h2 : a - c < b - c)
:
a < b
See lt_of_tsub_lt_tsub_right
for a stronger statement in a linear order.
theorem
tsub_add_tsub_cancel
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
(hab : b ≤ a)
(hcb : c ≤ b)
:
theorem
tsub_tsub_tsub_cancel_right
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
(h : c ≤ b)
:
Lemmas that assume that an element is AddLECancellable
. #
theorem
AddLECancellable.eq_tsub_iff_add_eq_of_le
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
(hc : AddLECancellable c)
(h : c ≤ b)
:
theorem
AddLECancellable.tsub_eq_iff_eq_add_of_le
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
(hb : AddLECancellable b)
(h : b ≤ a)
:
theorem
AddLECancellable.add_tsub_assoc_of_le
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{b c : α}
(hc : AddLECancellable c)
(h : c ≤ b)
(a : α)
:
theorem
AddLECancellable.tsub_add_eq_add_tsub
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
(hb : AddLECancellable b)
(h : b ≤ a)
:
theorem
AddLECancellable.tsub_tsub_assoc
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
(hbc : AddLECancellable (b - c))
(h₁ : b ≤ a)
(h₂ : c ≤ b)
:
theorem
AddLECancellable.tsub_add_tsub_comm
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c d : α}
(hb : AddLECancellable b)
(hd : AddLECancellable d)
(hba : b ≤ a)
(hdc : d ≤ c)
:
theorem
AddLECancellable.le_tsub_iff_left
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
(ha : AddLECancellable a)
(h : a ≤ c)
:
theorem
AddLECancellable.le_tsub_iff_right
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
(ha : AddLECancellable a)
(h : a ≤ c)
:
theorem
AddLECancellable.tsub_lt_iff_left
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
(hb : AddLECancellable b)
(hba : b ≤ a)
:
theorem
AddLECancellable.tsub_lt_iff_right
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
(hb : AddLECancellable b)
(hba : b ≤ a)
:
theorem
AddLECancellable.tsub_lt_iff_tsub_lt
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
(hb : AddLECancellable b)
(hc : AddLECancellable c)
(h₁ : b ≤ a)
(h₂ : c ≤ a)
:
theorem
AddLECancellable.le_tsub_iff_le_tsub
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
(ha : AddLECancellable a)
(hc : AddLECancellable c)
(h₁ : a ≤ b)
(h₂ : c ≤ b)
:
theorem
AddLECancellable.lt_tsub_iff_right_of_le
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
(hc : AddLECancellable c)
(h : c ≤ b)
:
theorem
AddLECancellable.lt_tsub_iff_left_of_le
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
(hc : AddLECancellable c)
(h : c ≤ b)
:
theorem
AddLECancellable.tsub_inj_right
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
(hab : AddLECancellable (a - b))
(h₁ : b ≤ a)
(h₂ : c ≤ a)
(h₃ : a - b = a - c)
:
b = c
theorem
AddLECancellable.lt_of_tsub_lt_tsub_left_of_le
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
[AddLeftReflectLT α]
(hb : AddLECancellable b)
(hca : c ≤ a)
(h : a - b < a - c)
:
c < b
theorem
AddLECancellable.tsub_lt_tsub_left_of_le
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
(hab : AddLECancellable (a - b))
(h₁ : b ≤ a)
(h : c < b)
:
theorem
AddLECancellable.tsub_lt_tsub_right_of_le
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
(hc : AddLECancellable c)
(h : c ≤ a)
(h2 : a < b)
:
theorem
AddLECancellable.tsub_lt_tsub_iff_left_of_le_of_le
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
[AddLeftReflectLT α]
(hb : AddLECancellable b)
(hab : AddLECancellable (a - b))
(h₁ : b ≤ a)
(h₂ : c ≤ a)
:
@[simp]
theorem
AddLECancellable.add_tsub_tsub_cancel
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
(hac : AddLECancellable (a - c))
(h : c ≤ a)
:
theorem
AddLECancellable.tsub_tsub_cancel_of_le
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b : α}
(hba : AddLECancellable (b - a))
(h : a ≤ b)
:
theorem
AddLECancellable.tsub_tsub_tsub_cancel_left
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
(hab : AddLECancellable (a - b))
(h : b ≤ a)
:
Lemmas where addition is order-reflecting. #
theorem
eq_tsub_iff_add_eq_of_le
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
[AddLeftReflectLE α]
(h : c ≤ b)
:
theorem
tsub_eq_iff_eq_add_of_le
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
[AddLeftReflectLE α]
(h : b ≤ a)
:
theorem
add_tsub_assoc_of_le
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{b c : α}
[AddLeftReflectLE α]
(h : c ≤ b)
(a : α)
:
See add_tsub_le_assoc
for an inequality.
theorem
tsub_add_eq_add_tsub
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
[AddLeftReflectLE α]
(h : b ≤ a)
:
theorem
tsub_tsub_assoc
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
[AddLeftReflectLE α]
(h₁ : b ≤ a)
(h₂ : c ≤ b)
:
theorem
tsub_add_tsub_comm
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c d : α}
[AddLeftReflectLE α]
(hba : b ≤ a)
(hdc : d ≤ c)
:
theorem
le_tsub_iff_left
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
[AddLeftReflectLE α]
(h : a ≤ c)
:
theorem
le_tsub_iff_right
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
[AddLeftReflectLE α]
(h : a ≤ c)
:
theorem
tsub_lt_iff_left
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
[AddLeftReflectLE α]
(hbc : b ≤ a)
:
theorem
tsub_lt_iff_right
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
[AddLeftReflectLE α]
(hbc : b ≤ a)
:
theorem
tsub_lt_iff_tsub_lt
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
[AddLeftReflectLE α]
(h₁ : b ≤ a)
(h₂ : c ≤ a)
:
theorem
le_tsub_iff_le_tsub
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
[AddLeftReflectLE α]
(h₁ : a ≤ b)
(h₂ : c ≤ b)
:
theorem
lt_tsub_iff_right_of_le
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
[AddLeftReflectLE α]
(h : c ≤ b)
:
See lt_tsub_iff_right
for a stronger statement in a linear order.
theorem
lt_tsub_iff_left_of_le
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
[AddLeftReflectLE α]
(h : c ≤ b)
:
See lt_tsub_iff_left
for a stronger statement in a linear order.
theorem
lt_of_tsub_lt_tsub_left_of_le
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
[AddLeftReflectLE α]
[AddLeftReflectLT α]
(hca : c ≤ a)
(h : a - b < a - c)
:
c < b
See lt_of_tsub_lt_tsub_left
for a stronger statement in a linear order.
theorem
tsub_lt_tsub_left_of_le
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
[AddLeftReflectLE α]
:
theorem
tsub_lt_tsub_right_of_le
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
[AddLeftReflectLE α]
(h : c ≤ a)
(h2 : a < b)
:
theorem
tsub_inj_right
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
[AddLeftReflectLE α]
(h₁ : b ≤ a)
(h₂ : c ≤ a)
(h₃ : a - b = a - c)
:
b = c
theorem
tsub_lt_tsub_iff_left_of_le_of_le
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
[AddLeftReflectLE α]
[AddLeftReflectLT α]
(h₁ : b ≤ a)
(h₂ : c ≤ a)
:
See tsub_lt_tsub_iff_left_of_le
for a stronger statement in a linear order.
@[simp]
theorem
add_tsub_tsub_cancel
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
[AddLeftReflectLE α]
(h : c ≤ a)
:
theorem
tsub_tsub_cancel_of_le
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b : α}
[AddLeftReflectLE α]
(h : a ≤ b)
:
See tsub_tsub_le
for an inequality.
theorem
tsub_tsub_tsub_cancel_left
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
[AddLeftReflectLE α]
(h : b ≤ a)
:
theorem
tsub_tsub_eq_add_tsub_of_le
{α : Type u_1}
[AddCommSemigroup α]
[PartialOrder α]
[ExistsAddOfLE α]
[AddLeftMono α]
[Sub α]
[OrderedSub α]
{a b c : α}
[AddLeftReflectLE α]
(h : c ≤ b)
:
The tsub
version of sub_sub_eq_add_sub
.